WASTEWATER TREATMENT TECHNOLOGY FOR AGRICULTURAL IRRIGATION IN SPAIN
Abstract
Water scarcity in Spain has become a major challenge for the agricultural sector, thus encouraging the use of treated wastewater as an alternative source of irrigation. This study aims to evaluate the effectiveness of wastewater treatment technology on agricultural productivity, environmental impact, and farmers’ income in Spain. The research method used is an experimental quantitative design with data collection from wastewater treatment plants, field tests on soil quality, as well as interviews and questionnaires to farmers in the research area. The results show that the use of treated wastewater increases crop yields by 10-15% and reduces the use of chemical fertilizers by 20%, without causing a negative impact on soil and groundwater quality. Farmers’ acceptance of this technology is also quite high, driven by real economic benefits. In conclusion, wastewater treatment technology in Spain has the potential to be a sustainable solution to the water crisis in the agricultural sector, although more research is needed to understand the long-term impact on the environment.
Full text article
References
Akhtar, S., Hussain, M. I., Khan, Z. I., Akhtar, T., Muneeb, A., Khan, A., Ahmad, K., Hussain, S., Bashir, S., Ali, S., Faisal, M., & Alatar, A. A. (2025). Wastewater irrigation elevates chromium uptake in cereal crops: Bioaccumulation dynamics and carcinogenic risk assessment in a semi-arid agroecosystems. Agricultural Water Management, 321, 109906. https://doi.org/10.1016/j.agwat.2025.109906
Álvarez-González, A., Castro, I. M. P., Ortiz, A., Díez-Montero, R., Passos, F., Garfí, M., & Uggetti, E. (2025). Environmental and economic benefits of using microalgae grown in wastewater as biofertilizer for lettuce cultivation. Bioresource Technology, 424, 132230. https://doi.org/10.1016/j.biortech.2025.132230
Andreasidou, E., Kova?i?, A., Manzano-Sánchez, L., Heath, D., Kosjek, T., Pintar, M., Marši?, N. K., Blaznik, U., Fernández-Alba, A. R., Hernando, M. D., & Heath, E. (2025). Uptake of emerging contaminants in tomato plants: A field study on treated wastewater reuse. Environment International, 205, 109916. https://doi.org/10.1016/j.envint.2025.109916
Arias, A., Ribeiro, J. M., Tsalidis, G., Renfrew, D., Dias, D., Avramidi, M., Kyriazi, M., Moreira, M. T., & Katsou, E. (2025). Urban wastewater treatment plants as resource hubs: Evaluating circularity and sustainability of nutrient recovery and water reuse. Water Research, 287, 124406. https://doi.org/10.1016/j.watres.2025.124406
Benjamin, Z., Najmeh, T., & Shariati, M. (2024). Applications of Artificial Intelligence in Weather Prediction and Agricultural Risk Management in India. Agriculturae Studium of Research, 1(1), 15–27. https://doi.org/10.55849/agriculturae.v1i1.172
Carter, L. J., Adams, B., Berman, T., Cohen, N., Cytryn, E., Elder, F. C. T., Garduño-Jiménez, A.-L., Greenwald, D., Kasprzyk-Hordern, B., Korach-Rechtman, H., Lahive, E., Martin, I., Ben Mordechay, E., Murray, A. K., Murray, L. M., Nightingale, J., Radian, A., Rubin, A. E., Sallach, B., … Chefetz, B. (2025). Co-contaminant risks in water reuse and biosolids application for agriculture. Environmental Pollution, 375, 126219. https://doi.org/10.1016/j.envpol.2025.126219
Castro, M. P., Mena, I. F., Sáez, C., & Rodrigo, M. A. (2025). Treatment of effluent from municipal wastewater treatment plants using electrochemically produced Caro’s acid. Journal of Environmental Management, 373, 123686. https://doi.org/10.1016/j.jenvman.2024.123686
Coppens, K., Geyer, T., Monod, A., Strande, L., & Stoll, S. (2025). Evaluation of vermifilter-treated domestic wastewater for irrigation and fertigation: Opportunities and challenges for implementation. Journal of Water Process Engineering, 77, 108295. https://doi.org/10.1016/j.jwpe.2025.108295
da Silva, C. P., da Silva, N. S. R., & de Campos, S. X. (2025). Systematic review on the global strategies and regulatory frameworks for treated wastewater reuse. Total Environment Engineering, 4, 100036. https://doi.org/10.1016/j.teengi.2025.100036
Derk, K., Nathan, S., & Jonathan, O. (2024). The Role of Biotechnology in Plant Breeding for Sustainable Agriculture in Brazil. Agriculturae Studium of Research, 1(1), 41–55. https://doi.org/10.55849/agriculturae.v1i1.172
Du, Y., Liu, X., Zhang, L., & Zhou, W. (2023). Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta-analysis. Science of The Total Environment, 880, 163226. https://doi.org/10.1016/j.scitotenv.2023.163226
Ebrahimian, H., & Zeleke, K. (2025). Chapter 4—Water and irrigation management in semiarid and arid lands for sustainable agriculture. In H. Etesami & Y. Chen (Eds.), Sustainable Agriculture under Drought Stress (pp. 31–47). Academic Press. https://doi.org/10.1016/B978-0-443-23956-4.00004-1
Feng, D., Ning, S., Sun, X., Zhang, J., Zhu, H., Tang, J., & Xu, Y. (2023). Agricultural use of deserted saline land through an optimized drip irrigation system with mild salinized water. Agricultural Water Management, 281, 108261. https://doi.org/10.1016/j.agwat.2023.108261
Gao, J., Zhuo, L., Duan, X., & Wu, P. (2023). Agricultural water-saving potentials with water footprint benchmarking under different tillage practices for crop production in an irrigation district. Agricultural Water Management, 282, 108274. https://doi.org/10.1016/j.agwat.2023.108274
García-Mollá, M., Medina, R. P., Vega-Carrero, V., & Sanchis-Ibor, C. (2025). Economic efficiency of drip and flood irrigation. Comparative analysis at farm scale using DEA. Agricultural Water Management, 309, 109314. https://doi.org/10.1016/j.agwat.2025.109314
Garrido, I., Martínez-Escudero, C. M., Aliste, M., León Morán, L. O., Contreras, F., Hellín, P., Flores, P., & Fenoll, J. (2025). Degradation of macrolide antibiotics in wastewater and soil by different advanced oxidation technologies. Journal of Environmental Management, 392, 126859. https://doi.org/10.1016/j.jenvman.2025.126859
Guilin, X., Jiao, D., & Wang, Y. (2024). The Precision Agriculture Revolution in Asia: Optimizing Crop Yields with IoT Technology. Agriculturae Studium of Research, 1(1), 1–14. https://doi.org/10.55849/agriculturae.v1i1.172
Hodaifa, G., Maaitah, M., & Belaiba, A. (2025). Evaluation of three microalgae within an integrated friendly climatic change bioprocess for real two-phase decanter extraction process olive mill wastewater bioremediation. Journal of Industrial and Engineering Chemistry, 150, 333–346. https://doi.org/10.1016/j.jiec.2025.02.052
Jagaba, A. H., Bashir, F. M., Lawal, I. M., Usman, A. K., Yaro, N. S. A., Birniwa, A. H., Hamdoun, H. Y., & Shannan, N. M. (2023). Agricultural Wastewater Treatment Using Oil Palm Waste Activated Hydrochar for Reuse in Plant Irrigation: Synthesis, Characterization, and Process Optimization. Agriculture, 13(8), 1531. https://doi.org/10.3390/agriculture13081531
Khedher, M., Phogat, V., Chow, C. W. K., Palmer, N., Anese, J., Tucker, A., Petrie, P., van den Akker, B., & Rameezdeen, R. (2025). Evaluation of current inland desalination of moderately saline brackish groundwater for expansion of irrigated agriculture. Groundwater for Sustainable Development, 29, 101449. https://doi.org/10.1016/j.gsd.2025.101449
Leal Pacheco, F. A., & Tarlé Pissarra, T. C. (2025). Water security in the agriculture and cattle grazing activities: A systematic review. Water Security, 100191. https://doi.org/10.1016/j.wasec.2025.100191
Lin, S., Wang, Q., Deng, M., Su, L., Wei, K., Guo, Y., & Zhang, J. (2024). Assessing the influence of water fertilizer, and climate factors on seed cotton yield under mulched drip irrigation in Xinjiang Agricultural Regions. European Journal of Agronomy, 152, 127034. https://doi.org/10.1016/j.eja.2023.127034
Mehanni, M. M., Gadow, S. I., Alshammari, F. A., Modafer, Y., Ghanem, K. Z., El-Tahtawi, N. F., El-Homosy, R. F., & Hesham, A. E.-L. (2023). Antibiotic-resistant bacteria in hospital wastewater treatment plant effluent and the possible consequences of its reuse in agricultural irrigation. Frontiers in Microbiology, 14, 1141383. https://doi.org/10.3389/fmicb.2023.1141383
Okut, N., Hamzat, A. K., Rajakaruna, R. A. D. N. V., & Asmatulu, E. (2025). Agricultural wastewater treatment and reuse technologies: A comprehensive review. Journal of Water Process Engineering, 69, 106699. https://doi.org/10.1016/j.jwpe.2024.106699
Oosterbaan, M., Gómez-Jakobsen, F., Barberá, G. G., Mercado, J. M., Ferrera, I., Yebra, L., Valero-Garcés, B., Delgado-Huertas, A., Álvarez, M., Marín-Guirao, L., Martínez, P. M., Orenes-Salazar, V., Galofré, M., Granados, A., Verdugo, C., Cabello, A. M., Camarena-Gómez, M. T., Gazulla, C. R., Ouaissa, S., … Ruíz, J. M. (2025). Characterization and potential causes of a whiting event in the Mar Menor coastal lagoon (Mediterranean, SE Spain). Science of The Total Environment, 978, 179391. https://doi.org/10.1016/j.scitotenv.2025.179391
Ozal, G., Ilyasova, C., & Ilgiz, V. (2024). Post-Harvest Storage and Processing Technology in Russia: Reducing Yield Loss. Agriculturae Studium of Research, 1(1), 28–49. https://doi.org/10.55849/agriculturae.v1i1.172
Pampinella, D., Lucia, C., Badalucco, L., & Laudicina, V. A. (2025). Citrus wastewaters increase soil nitrate and improve nutrient translocation in a copper contaminated soil-lettuce (Lactuca sativa L.) system. Science of The Total Environment, 982, 179633. https://doi.org/10.1016/j.scitotenv.2025.179633
Ramm, K., & Wojciechowska, M. (2025). Closing local water cycles based on MBR treatment plants in tourist resorts—Microbiological risk assessment. Desalination and Water Treatment, 322, 101204. https://doi.org/10.1016/j.dwt.2025.101204
Rogger, T., Jonathan, H., & Lindsey, K. (2024). Smart Fertilization Technology for Agricultural Efficiency in Canada. Agriculturae Studium of Research, 1(1), 56–70. https://doi.org/10.55849/agriculturae.v1i1.172
Shah, S. M. H., Abba, S. I., Yassin, M. A., Al-Qadami, E., Lawal, D. U., Khan, I. A., Usman, J., Qureshi, H. U., & Aljundi, I. H. (2025). Advancing wastewater reuse: AI-driven insights into ozone-based organic pollutant reduction. Water-Energy Nexus, 8, 152–166. https://doi.org/10.1016/j.wen.2025.05.002
Tian, X., Dong, J., Jin, S., He, H., Yin, H., & Chen, X. (2023). Climate change impacts on regional agricultural irrigation water use in semi-arid environments. Agricultural Water Management, 281, 108239. https://doi.org/10.1016/j.agwat.2023.108239
Wu, Z., Tian, G., Xia, Q., Hu, H., & Li, J. (2023). Connotation, calculation and influencing factors of the water-use rights benchmark price: A case study of agricultural water use in the Ningxia Yellow River irrigation area. Agricultural Water Management, 283, 108300. https://doi.org/10.1016/j.agwat.2023.108300
Zhang, C., Ge, Q., Dong, J., Zhang, X., Li, Y., & Han, S. (2023). Characterizing spatial, diurnal, and seasonal patterns of agricultural irrigation expansion-induced cooling in Northwest China from 2000 to 2020. Agricultural and Forest Meteorology, 330, 109304. https://doi.org/10.1016/j.agrformet.2022.109304
Zhang, Y., Wu, Z., Singh, V. P., Lin, Q., Ning, S., Zhou, Y., Jin, J., Zhou, R., & Ma, Q. (2023). Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts. Agricultural Water Management, 282, 108266. https://doi.org/10.1016/j.agwat.2023.108266
Authors
Copyright (c) 2025 Bui Minh Tu, Nam Peng, Nguyen Thi Mai

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.