WASTEWATER TREATMENT TECHNOLOGY FOR AGRICULTURAL IRRIGATION IN SPAIN

Bui Minh Tu (1), Nam Peng (2), Nguyen Thi Mai (3)
(1) University of Economics Ho Chi Minh City, Viet Nam,
(2) University of Economics Ho Chi Minh City, Viet Nam,
(3) Hanoi Foreign Trade University, Viet Nam

Abstract

Water scarcity in Spain has become a major challenge for the agricultural sector, thus encouraging the use of treated wastewater as an alternative source of irrigation. This study aims to evaluate the effectiveness of wastewater treatment technology on agricultural productivity, environmental impact, and farmers’ income in Spain. The research method used is an experimental quantitative design with data collection from wastewater treatment plants, field tests on soil quality, as well as interviews and questionnaires to farmers in the research area. The results show that the use of treated wastewater increases crop yields by 10-15% and reduces the use of chemical fertilizers by 20%, without causing a negative impact on soil and groundwater quality. Farmers’ acceptance of this technology is also quite high, driven by real economic benefits. In conclusion, wastewater treatment technology in Spain has the potential to be a sustainable solution to the water crisis in the agricultural sector, although more research is needed to understand the long-term impact on the environment.

Full text article

Generated from XML file

References

Akhtar, S., Hussain, M. I., Khan, Z. I., Akhtar, T., Muneeb, A., Khan, A., Ahmad, K., Hussain, S., Bashir, S., Ali, S., Faisal, M., & Alatar, A. A. (2025). Wastewater irrigation elevates chromium uptake in cereal crops: Bioaccumulation dynamics and carcinogenic risk assessment in a semi-arid agroecosystems. Agricultural Water Management, 321, 109906. https://doi.org/10.1016/j.agwat.2025.109906

Álvarez-González, A., Castro, I. M. P., Ortiz, A., Díez-Montero, R., Passos, F., Garfí, M., & Uggetti, E. (2025). Environmental and economic benefits of using microalgae grown in wastewater as biofertilizer for lettuce cultivation. Bioresource Technology, 424, 132230. https://doi.org/10.1016/j.biortech.2025.132230

Andreasidou, E., Kova?i?, A., Manzano-Sánchez, L., Heath, D., Kosjek, T., Pintar, M., Marši?, N. K., Blaznik, U., Fernández-Alba, A. R., Hernando, M. D., & Heath, E. (2025). Uptake of emerging contaminants in tomato plants: A field study on treated wastewater reuse. Environment International, 205, 109916. https://doi.org/10.1016/j.envint.2025.109916

Arias, A., Ribeiro, J. M., Tsalidis, G., Renfrew, D., Dias, D., Avramidi, M., Kyriazi, M., Moreira, M. T., & Katsou, E. (2025). Urban wastewater treatment plants as resource hubs: Evaluating circularity and sustainability of nutrient recovery and water reuse. Water Research, 287, 124406. https://doi.org/10.1016/j.watres.2025.124406

Benjamin, Z., Najmeh, T., & Shariati, M. (2024). Applications of Artificial Intelligence in Weather Prediction and Agricultural Risk Management in India. Agriculturae Studium of Research, 1(1), 15–27. https://doi.org/10.55849/agriculturae.v1i1.172

Carter, L. J., Adams, B., Berman, T., Cohen, N., Cytryn, E., Elder, F. C. T., Garduño-Jiménez, A.-L., Greenwald, D., Kasprzyk-Hordern, B., Korach-Rechtman, H., Lahive, E., Martin, I., Ben Mordechay, E., Murray, A. K., Murray, L. M., Nightingale, J., Radian, A., Rubin, A. E., Sallach, B., … Chefetz, B. (2025). Co-contaminant risks in water reuse and biosolids application for agriculture. Environmental Pollution, 375, 126219. https://doi.org/10.1016/j.envpol.2025.126219

Castro, M. P., Mena, I. F., Sáez, C., & Rodrigo, M. A. (2025). Treatment of effluent from municipal wastewater treatment plants using electrochemically produced Caro’s acid. Journal of Environmental Management, 373, 123686. https://doi.org/10.1016/j.jenvman.2024.123686

Coppens, K., Geyer, T., Monod, A., Strande, L., & Stoll, S. (2025). Evaluation of vermifilter-treated domestic wastewater for irrigation and fertigation: Opportunities and challenges for implementation. Journal of Water Process Engineering, 77, 108295. https://doi.org/10.1016/j.jwpe.2025.108295

da Silva, C. P., da Silva, N. S. R., & de Campos, S. X. (2025). Systematic review on the global strategies and regulatory frameworks for treated wastewater reuse. Total Environment Engineering, 4, 100036. https://doi.org/10.1016/j.teengi.2025.100036

Derk, K., Nathan, S., & Jonathan, O. (2024). The Role of Biotechnology in Plant Breeding for Sustainable Agriculture in Brazil. Agriculturae Studium of Research, 1(1), 41–55. https://doi.org/10.55849/agriculturae.v1i1.172

Du, Y., Liu, X., Zhang, L., & Zhou, W. (2023). Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta-analysis. Science of The Total Environment, 880, 163226. https://doi.org/10.1016/j.scitotenv.2023.163226

Ebrahimian, H., & Zeleke, K. (2025). Chapter 4—Water and irrigation management in semiarid and arid lands for sustainable agriculture. In H. Etesami & Y. Chen (Eds.), Sustainable Agriculture under Drought Stress (pp. 31–47). Academic Press. https://doi.org/10.1016/B978-0-443-23956-4.00004-1

Feng, D., Ning, S., Sun, X., Zhang, J., Zhu, H., Tang, J., & Xu, Y. (2023). Agricultural use of deserted saline land through an optimized drip irrigation system with mild salinized water. Agricultural Water Management, 281, 108261. https://doi.org/10.1016/j.agwat.2023.108261

Gao, J., Zhuo, L., Duan, X., & Wu, P. (2023). Agricultural water-saving potentials with water footprint benchmarking under different tillage practices for crop production in an irrigation district. Agricultural Water Management, 282, 108274. https://doi.org/10.1016/j.agwat.2023.108274

García-Mollá, M., Medina, R. P., Vega-Carrero, V., & Sanchis-Ibor, C. (2025). Economic efficiency of drip and flood irrigation. Comparative analysis at farm scale using DEA. Agricultural Water Management, 309, 109314. https://doi.org/10.1016/j.agwat.2025.109314

Garrido, I., Martínez-Escudero, C. M., Aliste, M., León Morán, L. O., Contreras, F., Hellín, P., Flores, P., & Fenoll, J. (2025). Degradation of macrolide antibiotics in wastewater and soil by different advanced oxidation technologies. Journal of Environmental Management, 392, 126859. https://doi.org/10.1016/j.jenvman.2025.126859

Guilin, X., Jiao, D., & Wang, Y. (2024). The Precision Agriculture Revolution in Asia: Optimizing Crop Yields with IoT Technology. Agriculturae Studium of Research, 1(1), 1–14. https://doi.org/10.55849/agriculturae.v1i1.172

Hodaifa, G., Maaitah, M., & Belaiba, A. (2025). Evaluation of three microalgae within an integrated friendly climatic change bioprocess for real two-phase decanter extraction process olive mill wastewater bioremediation. Journal of Industrial and Engineering Chemistry, 150, 333–346. https://doi.org/10.1016/j.jiec.2025.02.052

Jagaba, A. H., Bashir, F. M., Lawal, I. M., Usman, A. K., Yaro, N. S. A., Birniwa, A. H., Hamdoun, H. Y., & Shannan, N. M. (2023). Agricultural Wastewater Treatment Using Oil Palm Waste Activated Hydrochar for Reuse in Plant Irrigation: Synthesis, Characterization, and Process Optimization. Agriculture, 13(8), 1531. https://doi.org/10.3390/agriculture13081531

Khedher, M., Phogat, V., Chow, C. W. K., Palmer, N., Anese, J., Tucker, A., Petrie, P., van den Akker, B., & Rameezdeen, R. (2025). Evaluation of current inland desalination of moderately saline brackish groundwater for expansion of irrigated agriculture. Groundwater for Sustainable Development, 29, 101449. https://doi.org/10.1016/j.gsd.2025.101449

Leal Pacheco, F. A., & Tarlé Pissarra, T. C. (2025). Water security in the agriculture and cattle grazing activities: A systematic review. Water Security, 100191. https://doi.org/10.1016/j.wasec.2025.100191

Lin, S., Wang, Q., Deng, M., Su, L., Wei, K., Guo, Y., & Zhang, J. (2024). Assessing the influence of water fertilizer, and climate factors on seed cotton yield under mulched drip irrigation in Xinjiang Agricultural Regions. European Journal of Agronomy, 152, 127034. https://doi.org/10.1016/j.eja.2023.127034

Mehanni, M. M., Gadow, S. I., Alshammari, F. A., Modafer, Y., Ghanem, K. Z., El-Tahtawi, N. F., El-Homosy, R. F., & Hesham, A. E.-L. (2023). Antibiotic-resistant bacteria in hospital wastewater treatment plant effluent and the possible consequences of its reuse in agricultural irrigation. Frontiers in Microbiology, 14, 1141383. https://doi.org/10.3389/fmicb.2023.1141383

Okut, N., Hamzat, A. K., Rajakaruna, R. A. D. N. V., & Asmatulu, E. (2025). Agricultural wastewater treatment and reuse technologies: A comprehensive review. Journal of Water Process Engineering, 69, 106699. https://doi.org/10.1016/j.jwpe.2024.106699

Oosterbaan, M., Gómez-Jakobsen, F., Barberá, G. G., Mercado, J. M., Ferrera, I., Yebra, L., Valero-Garcés, B., Delgado-Huertas, A., Álvarez, M., Marín-Guirao, L., Martínez, P. M., Orenes-Salazar, V., Galofré, M., Granados, A., Verdugo, C., Cabello, A. M., Camarena-Gómez, M. T., Gazulla, C. R., Ouaissa, S., … Ruíz, J. M. (2025). Characterization and potential causes of a whiting event in the Mar Menor coastal lagoon (Mediterranean, SE Spain). Science of The Total Environment, 978, 179391. https://doi.org/10.1016/j.scitotenv.2025.179391

Ozal, G., Ilyasova, C., & Ilgiz, V. (2024). Post-Harvest Storage and Processing Technology in Russia: Reducing Yield Loss. Agriculturae Studium of Research, 1(1), 28–49. https://doi.org/10.55849/agriculturae.v1i1.172

Pampinella, D., Lucia, C., Badalucco, L., & Laudicina, V. A. (2025). Citrus wastewaters increase soil nitrate and improve nutrient translocation in a copper contaminated soil-lettuce (Lactuca sativa L.) system. Science of The Total Environment, 982, 179633. https://doi.org/10.1016/j.scitotenv.2025.179633

Ramm, K., & Wojciechowska, M. (2025). Closing local water cycles based on MBR treatment plants in tourist resorts—Microbiological risk assessment. Desalination and Water Treatment, 322, 101204. https://doi.org/10.1016/j.dwt.2025.101204

Rogger, T., Jonathan, H., & Lindsey, K. (2024). Smart Fertilization Technology for Agricultural Efficiency in Canada. Agriculturae Studium of Research, 1(1), 56–70. https://doi.org/10.55849/agriculturae.v1i1.172

Shah, S. M. H., Abba, S. I., Yassin, M. A., Al-Qadami, E., Lawal, D. U., Khan, I. A., Usman, J., Qureshi, H. U., & Aljundi, I. H. (2025). Advancing wastewater reuse: AI-driven insights into ozone-based organic pollutant reduction. Water-Energy Nexus, 8, 152–166. https://doi.org/10.1016/j.wen.2025.05.002

Tian, X., Dong, J., Jin, S., He, H., Yin, H., & Chen, X. (2023). Climate change impacts on regional agricultural irrigation water use in semi-arid environments. Agricultural Water Management, 281, 108239. https://doi.org/10.1016/j.agwat.2023.108239

Wu, Z., Tian, G., Xia, Q., Hu, H., & Li, J. (2023). Connotation, calculation and influencing factors of the water-use rights benchmark price: A case study of agricultural water use in the Ningxia Yellow River irrigation area. Agricultural Water Management, 283, 108300. https://doi.org/10.1016/j.agwat.2023.108300

Zhang, C., Ge, Q., Dong, J., Zhang, X., Li, Y., & Han, S. (2023). Characterizing spatial, diurnal, and seasonal patterns of agricultural irrigation expansion-induced cooling in Northwest China from 2000 to 2020. Agricultural and Forest Meteorology, 330, 109304. https://doi.org/10.1016/j.agrformet.2022.109304

Zhang, Y., Wu, Z., Singh, V. P., Lin, Q., Ning, S., Zhou, Y., Jin, J., Zhou, R., & Ma, Q. (2023). Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts. Agricultural Water Management, 282, 108266. https://doi.org/10.1016/j.agwat.2023.108266

Authors

Bui Minh Tu
buiminnn@gmail.com (Primary Contact)
Nam Peng
Nguyen Thi Mai
Tu, B. M., Peng, N. ., & Mai, N. T. . (2025). WASTEWATER TREATMENT TECHNOLOGY FOR AGRICULTURAL IRRIGATION IN SPAIN. Techno Agriculturae Studium of Research, 2(3), 169–183. https://doi.org/10.70177/agriculturae.v2i3.1998

Article Details