SOIL QUALITY MONITORING TECHNOLOGY WITH IOT SENSORS IN NORWAY

Emine Yildiz (1), Baran Akbulut (2), Sevda Kara (3)
(1) Bogazici University, Turkey,
(2) Istanbul Technical University, Turkey,
(3) Hacettepe University, Turkey

Abstract

Internet of Things (IoT)-based soil quality monitoring technology presents new opportunities in sustainable agricultural management, especially in countries with extreme climatic conditions such as Norway. This study aims to evaluate the effectiveness of the use of IoT sensors in monitoring soil quality in real-time and its impact on agricultural productivity. A quasi-experimental research design was used by comparing a group that used IoT sensors and a control group that used traditional methods. The results show that the use of IoT improves the stability of soil moisture, temperature, pH, and nutrient levels, as well as reduces the waste of water and fertilizer. Farmers who used this technology reported a 15% increase in productivity compared to the control group. In conclusion, IoT technology has proven to be effective in improving land management efficiency and supporting sustainable agriculture, although infrastructure-related challenges still need to be addressed.


 

Full text article

Generated from XML file

References

Akbari, A. (2025). The application of radio-frequency identification (RFID) technology in the petroleum engineering industry: Mixed review. Petroleum Research. https://doi.org/10.1016/j.ptlrs.2025.05.001

Awasthi, A., Das, S., Roy Choudhury, M., Kaur, S., Dutta, S., Kumar, V., & Chaube, S. (2025). Air pollution in the climate health nexus: A two-decade global review of pollutant trends, health burdens, and monitoring advancements. Physics and Chemistry of the Earth, Parts A/B/C, 141, 104198. https://doi.org/10.1016/j.pce.2025.104198

Benjamin, Z., Najmeh, T., & Shariati, M. (2024). Applications of Artificial Intelligence in Weather Prediction and Agricultural Risk Management in India. Agriculturae Studium of Research, 1(1), 15–27. https://doi.org/10.55849/agriculturae.v1i1.172

Branny, A., Andersson, E., & McPhearson, T. (2025). Micro-climate of nature-based solutions in stockholm royal seaport. Nature-Based Solutions, 7, 100206. https://doi.org/10.1016/j.nbsj.2024.100206

Carolan, M. (2020). Automated agrifood futures: Robotics, labor and the distributive politics of digital agriculture. The Journal of Peasant Studies, 47(1), 184–207. https://doi.org/10.1080/03066150.2019.1584189

Chan, I. Y. S., Twum-Ampofo, S., Ababio, B. K., Ghansah, F. A., & Li, S. (2025). Towards a whole process engineering approach for enhancing physical and psychological health in underground environments: A systematic review. Tunnelling and Underground Space Technology, 161, 106530. https://doi.org/10.1016/j.tust.2025.106530

Colace, F., Gaeta, R., Lorusso, A., Pellegrino, M., & Santaniello, D. (2025). New AI challenges for cultural heritage protection: A general overview. Journal of Cultural Heritage, 75, 168–193. https://doi.org/10.1016/j.culher.2025.07.019

Crasto, V. S., Free, T. B., Steinhauser, D. A., Pistorino, D., Philipp, O. J., Sharma, V., & Arnold, D. P. (2025). Opportunistic Wireless Recharging of Buried Agricultural Sensor Networks using Mobile Infrastructure. 8th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture AGRICONTROL 2025, 59(23), 227–232. https://doi.org/10.1016/j.ifacol.2025.11.791

Derk, K., Nathan, S., & Jonathan, O. (2024). The Role of Biotechnology in Plant Breeding for Sustainable Agriculture in Brazil. Agriculturae Studium of Research, 1(1), 41–55. https://doi.org/10.55849/agriculturae.v1i1.172

Dinesh, N. S. V., & Sivasankar, P. (2026). Chapter 4—Technologies for reducing emissions in upstream operations. In S. Kumar & A. Bera (Eds.), Decarbonizing the Petroleum Industry (pp. 131–165). Elsevier. https://doi.org/10.1016/B978-0-443-31524-4.00004-6

Elmousalami, H., Maxy, M., Hui, F. K. P., & Aye, L. (2025). AI in automated sustainable construction engineering management. Automation in Construction, 175, 106202. https://doi.org/10.1016/j.autcon.2025.106202

Forliano, C., Panero, M., Bernardi, P. D., & Cane, M. (2026). Sustainable innovation on the menu: Business models reshaping the food system. In P. Alexander (Ed.), Encyclopedia of Agriculture and Food Systems (Third Edition) (pp. 339–356). Academic Press. https://doi.org/10.1016/B978-0-443-15976-3.00087-8

Guilin, X., Jiao, D., & Wang, Y. (2024). The Precision Agriculture Revolution in Asia: Optimizing Crop Yields with IoT Technology. Agriculturae Studium of Research, 1(1), 1–14. https://doi.org/10.55849/agriculturae.v1i1.172

Hashmi, Z., Metali, F., Amin, M., Abu Bakar, M. S., Wibisono, Y., Nugroho, W. A., & Bilad, M. R. (2025). Recirculating aquaculture systems: Advances, impacts, and integrated pathways for sustainable growth. Bioresource Technology Reports, 32, 102340. https://doi.org/10.1016/j.biteb.2025.102340

Ineza, W. B., Izere, E. C., Sonnenschein, R., Kukunda, C. B., Tumwebaze, F., Shumbusho, R., & Razak, K. A. (2025). Application of geospatial and ICT technologies for landslide disaster risk reduction in Rwanda. Progress in Disaster Science, 28, 100466. https://doi.org/10.1016/j.pdisas.2025.100466

Iveti?, V., Chiatante, D., & Morcillo, L. (2026). Chapter 8—Assessment and monitoring of early tree planting success. In J. A. Stanturf, P. V. Salvador, B. Mariotti, V. Iveti?, P. Madsen, A. Montagnoli, E. Andivia, I. Bebre, A. Dimitrova, & M. Klisz (Eds.), Guidelines for Climate Adaptive Forest Restoration and Reforestation Projects (pp. 275–304). Elsevier. https://doi.org/10.1016/B978-0-443-34086-4.00008-6

Kazanskiy, N. L., Doskolovich, L. L., Golovastikov, N. V., & Khonina, S. N. (2025). The power of fusion: LiDAR meets hyperspectral imaging in a new era of exploration. Optics & Laser Technology, 192, 114080. https://doi.org/10.1016/j.optlastec.2025.114080

Kheyruri, Y., Sharafati, A., Farzad, R., Hameed, A. S., & Ariyaei, A. (2025). A review of studies on assessing water quality parameters based on the Google earth Engine imagery. Remote Sensing Applications: Society and Environment, 38, 101581. https://doi.org/10.1016/j.rsase.2025.101581

Marchegiani, S., Gislon, G., Marino, R., Caroprese, M., Albenzio, M., Pinchak, W. E., Carstens, G. E., Ledda, L., Trombetta, M. F., Sandrucci, A., Pasquini, M., Deligios, P. A., & Ceccobelli, S. (2025). Smart technologies for sustainable pasture-based ruminant systems: A review. Smart Agricultural Technology, 10, 100789. https://doi.org/10.1016/j.atech.2025.100789

Mohammed, A. S., & Amoah, C. (2025). Rethinking facilities management practices in Ghanaian cemeteries: A comparative analysis of innovative and sustainable approaches. Facilities, 43(13), 910–938. https://doi.org/10.1108/F-09-2024-0129

Ozal, G., Ilyasova, C., & Ilgiz, V. (2024). Post-Harvest Storage and Processing Technology in Russia: Reducing Yield Loss. Agriculturae Studium of Research, 1(1), 28–49. https://doi.org/10.55849/agriculturae.v1i1.172

Papamichael, I., Economou, F., Voukkali, I., Loizia, P., Stylianou, M., Naddeo, V., & Zorpas, A. A. (2025). A metaverse framework for sustainable waste management considering circular economy. Chemical Engineering Journal, 512, 162283. https://doi.org/10.1016/j.cej.2025.162283

Pathare, P. B., Patil, H., Nirmal, N., de Waal, J. M., Jagtap, S., Mahanti, N. K., Sharma, P., & Prasath, V. A. (2026). Chapter 6—Digital twins and cloud computing. In A. Hassoun & J. Lerfall (Eds.), Seafood 4.0 (pp. 137–168). Elsevier. https://doi.org/10.1016/B978-0-443-33750-5.00008-1

Piciullo, L., Abraham, M. T., Drøsdal, I. N., & Paulsen, E. S. (2025). An operational IoT-based slope stability forecast using a digital twin. Environmental Modelling & Software, 183, 106228. https://doi.org/10.1016/j.envsoft.2024.106228

Pourrahmani, H., Amiri, M. T., Madi, H., & Owusu, J. P. (2025). Revolutionizing carbon sequestration: Integrating IoT, AI, and blockchain technologies in the fight against climate change. Energy Reports, 13, 5952–5967. https://doi.org/10.1016/j.egyr.2025.05.042

Rahmati, O., Melesse, A. M., & Naghibi, A. (2026). Chapter 1—Water scarcity crisis: Overview of challenges and solutions. In O. Rahmati, A. M. Melesse, & A. Naghibi (Eds.), Water Scarcity Management (pp. 1–12). Elsevier. https://doi.org/10.1016/B978-0-443-26722-2.00027-1

Rogger, T., Jonathan, H., & Lindsey, K. (2024). Smart Fertilization Technology for Agricultural Efficiency in Canada. Agriculturae Studium of Research, 1(1), 56–70. https://doi.org/10.55849/agriculturae.v1i1.172

Sanfilippo, R., Esfandiari, M., Foria, F., Garbutt, D., Glab, K., Karlovšek, J., Menozzi, A., Paskaleva, G., & Robert, F. (2025). ITA ? AITES tunnelling information modelling ? A BIM approach for a sustainable life cycle management. Tunnelling and Underground Space Technology, 165, 106711. https://doi.org/10.1016/j.tust.2025.106711

Shahzad, M., Tah, J. H. M., Younas, M., & Almukhtar, A. (2025). Technologies and techniques in digital twins for real-time data visualisation in building maintenance: A state-of-the-art review. Journal of Infrastructure Intelligence and Resilience, 4(4), 100185. https://doi.org/10.1016/j.iintel.2025.100185

Sharma, R., Shishodia, A., Kamble, S., Gunasekaran, A., & Belhadi, A. (2024). Agriculture supply chain risks and COVID-19: Mitigation strategies and implications for the practitioners. International Journal of Logistics Research and Applications, 27(11), 2351–2377. https://doi.org/10.1080/13675567.2020.1830049

Slettli, V. (2026). Smart Farming or Digital Agriculture. In V. Ratten (Ed.), International Encyclopedia of Business Management (First Edition) (pp. 450–454). Academic Press. https://doi.org/10.1016/B978-0-443-13701-3.00490-4

Sreedharan, S., Ramachandran, M., & Ramesh, D. (2025). Harnessing digital twins and industrial-IoT for cutting-edge mining automation: A methodological and technology assessment prototype. Computers & Industrial Engineering, 201, 110871. https://doi.org/10.1016/j.cie.2025.110871

Taiwo, O. A., Odeleye, J. A., Hassan, S. A., Onah, A. A., & Mohsin, R. B. (2025). Transporting the invisible hazard: Risk assessment and mitigation strategies for radioactive shipments. Next Research, 2(4), 100854. https://doi.org/10.1016/j.nexres.2025.100854

Tawalbeh, M., Sabri, M., Kazim, H., Al-Othman, A., & Almomani, F. (2025). Artificial intelligence and material design in carbon capture and utilization: A review of emerging synergies. Carbon Capture Science & Technology, 16, 100470. https://doi.org/10.1016/j.ccst.2025.100470

Witzell, J., Vilagrosa, A., Kanjevac, B., Hanssen, K. H., Chiatante, D., Bebre, I., Madsen, P., Çerçio?lu, M., & Morcillo, L. (2026). Chapter 6—Forward-looking practices for climate-responsive site preparation, direct seeding, and planting. In J. A. Stanturf, P. V. Salvador, B. Mariotti, V. Iveti?, P. Madsen, A. Montagnoli, E. Andivia, I. Bebre, A. Dimitrova, & M. Klisz (Eds.), Guidelines for Climate Adaptive Forest Restoration and Reforestation Projects (pp. 193–241). Elsevier. https://doi.org/10.1016/B978-0-443-34086-4.00010-4

Authors

Emine Yildiz
emineyildiz@gmail.com (Primary Contact)
Baran Akbulut
Sevda Kara
Yildiz, E., Akbulut, B. ., & Kara, S. . (2025). SOIL QUALITY MONITORING TECHNOLOGY WITH IOT SENSORS IN NORWAY. Techno Agriculturae Studium of Research, 2(4), 213–227. https://doi.org/10.70177/agriculturae.v2i4.2002

Article Details