THE USE OF ARTIFICIAL INTELLIGENCE FOR PREDICTING COFFEE BEAN QUALITY BASED ON DIGITAL IMAGES AND SENSOR DATA

Eddy Silamat (1), Khalil Zaman (2), Shazia Akhtar (3)
(1) Pat Petulai University, Indonesia,
(2) Mazar University, Afghanistan,
(3) Nangarhar University, Afghanistan

Abstract

The increasing global demand for high-quality coffee requires more efficient and objective methods to evaluate bean quality. Traditional sensory and manual inspection techniques are time-consuming, subjective, and prone to inconsistency. This study aims to develop and validate an Artificial Intelligence (AI)-based predictive model for assessing coffee bean quality using digital image processing and sensor data. The research employs a quantitative experimental approach by integrating convolutional neural networks (CNNs) for visual analysis and machine learning regression models to process multispectral sensor data related to moisture, color, and aroma parameters. A dataset of 5,000 labeled coffee bean samples from three regional plantations was used for training and validation. The results demonstrate that the hybrid AI model achieved an accuracy rate of 96.8% in predicting bean grades compared to expert cupping scores, outperforming traditional visual grading methods by 18%. Furthermore, the integration of digital imaging and IoT-based sensors significantly reduced evaluation time and human error. The findings highlight AI’s potential to revolutionize coffee quality control by enabling automated, consistent, and scalable assessment systems that support sustainable agricultural practices.

Full text article

Generated from XML file

References

Alhasson, H. F., & Alharbi, S. S. (2025). Classification of Saudi Coffee beans using a mobile application leveraging squeeze vision transformer technology. Neural Computing and Applications, 37(14), 8629–8649. Scopus. https://doi.org/10.1007/s00521-025-11024-9

Alloun, W., Berkani, M., Shavandi, A., Beddiar, A., Pellegrini, M., Garzia, M., Lakhdari, D., Ganachari, S. V., Aminabhavi, T. M., Vasseghian, Y., Muddapur, U., & Kacem-Chaouche, N. K. (2024). Harnessing artificial intelligence-driven approach for enhanced indole-3-acetic acid from the newly isolated Streptomyces rutgersensis AW08. Environmental Research, 252. Scopus. https://doi.org/10.1016/j.envres.2024.118933

Araújo, J. (2025). The algorithm is a text. Texto Livre, 18. Scopus. https://doi.org/10.1590/1983-3652.2025.58505

Arwatchananukul, S., Xu, D., Charoenkwan, P., Aung Moon, S., & Saengrayap, R. (2024). Implementing a deep learning model for defect classification in Thai Arabica green coffee beans. Smart Agricultural Technology, 9. Scopus. https://doi.org/10.1016/j.atech.2024.100680

Azizi, Z., Alipour, P., Gomez, S., Broadwin, C., Islam, S., Sarraju, A., Rogers, A. J., Sandhu, A. T., & Rodriguez, F. (2023). Evaluating Recommendations about Atrial Fibrillation for Patients and Clinicians Obtained from Chat-Based Artificial Intelligence Algorithms. Circulation: Arrhythmia and Electrophysiology, 16(7), 415–417. Scopus. https://doi.org/10.1161/CIRCEP.123.012015

Benjamin, Z., Najmeh, T., & Shariati, M. (2024). Applications of Artificial Intelligence in Weather Prediction and Agricultural Risk Management in India. Agriculturae Studium of Research, 1(1), 15–27. https://doi.org/10.55849/agriculturae.v1i1.172

Bordin Yamashita, J. V. Y., & Leite, J. P. R. R. (2023). Coffee disease classification at the edge using deep learning. Smart Agricultural Technology, 4. Scopus. https://doi.org/10.1016/j.atech.2023.100183

Chang, C.-L., Lai, S.-C., & Chen, C.-Y. (2024). Domain Adaptation for Roasted Coffee Bean Quality Inspection. International Journal of Engineering and Technology Innovation, 14(3), 321–334. Scopus. https://doi.org/10.46604/ijeti.2024.13315

Chen, C.-Y., Lin, S.-F., Tseng, Y.-W., Dong, Z.-W., & Cai, C.-H. (2024). A Remote Access Server with Chatbot User Interface for Coffee Grinder Burr Wear Level Assessment Based on Imaging Granule Analysis and Deep Learning Techniques. Applied Sciences (Switzerland), 14(3). Scopus. https://doi.org/10.3390/app14031315

Costa, H. P. S., Duarte, E. D. V., Silva, F. V., Gurgel Carlos da Silva, M. G. C., & Vieira, M. G. A. (2024). Green synthesis of carbon nanotubes functionalized with iron nanoparticles and coffee husk biomass for efficient removal of losartan and diclofenac: Adsorption kinetics and ANN modeling studies. Environmental Research, 251. Scopus. https://doi.org/10.1016/j.envres.2024.118733

Cuello-Cuello, Y., Acosta-Prieto, J. L., García Cruz, M., & García-Dihigo, J. (2024). Postural evaluation with artificial intelligence tool for room maids in the tourism sector. Health Leadership and Quality of Life, 3. Scopus. https://doi.org/10.56294/hl2024.347

DelaVega-Quintero, J. C., Núñez-Pérez, J., Troya, B., Lara Fiallos, M., País, J.-M., & Espin-Valladares, R. (2025). AI Meets Citrus Waste: Coffee Bean Processing with Orange Peel Flour. Sustainability (Switzerland), 17(5). Scopus. https://doi.org/10.3390/su17052152

Derk, K., Nathan, S., & Jonathan, O. (2024). The Role of Biotechnology in Plant Breeding for Sustainable Agriculture in Brazil. Agriculturae Studium of Research, 1(1), 41–55. https://doi.org/10.55849/agriculturae.v1i1.172

Elragal, A., Awad, A. I., Andersson, I., & Nilsson, J. (2024). A Conversational AI Bot for Efficient Learning: A Prototypical Design. IEEE Access, 12, 154877–154887. Scopus. https://doi.org/10.1109/ACCESS.2024.3476953

Eron, F., Noman, M., de Oliveira, R. R., & Chalfun-Junior, A. (2024). Computer Vision-Aided Intelligent Monitoring of Coffee: Towards Sustainable Coffee Production. Scientia Horticulturae, 327. Scopus. https://doi.org/10.1016/j.scienta.2024.112847

Fuentes, J., Aguilar Castro, J., & Montoya, E. (2025). Autonomous cycle of data analysis tasks for the determination of the coffee productive process for MSMEs. Journal of Industrial Information Integration, 44. Scopus. https://doi.org/10.1016/j.jii.2025.100788

Guilin, X., Jiao, D., & Wang, Y. (2024). The Precision Agriculture Revolution in Asia: Optimizing Crop Yields with IoT Technology. Agriculturae Studium of Research, 1(1), 1–14. https://doi.org/10.55849/agriculturae.v1i1.172

Hong, S., Park, S., Youn, H., Lee, J., & Kwon, S. (2024). Implementation of Smart Farm Systems Based on Fog Computing in Artificial Intelligence of Things Environments. Sensors, 24(20). Scopus. https://doi.org/10.3390/s24206689

Jang, M., Bae, G., Kwon, Y. M., Cho, J. H., Lee, D. H., Kang, S., Yim, S., Myung, S., Lim, J., Lee, S. S., Song, W., & An, K.-S. (2024). Artificial Q-Grader: Machine Learning-Enabled Intelligent Olfactory and Gustatory Sensing System. Advanced Science, 11(23). Scopus. https://doi.org/10.1002/advs.202308976

Kim, Y., Lee, J., & Kim, S. (2024). Study of active food processing technology using computer vision and AI in coffee roasting. Food Science and Biotechnology, 33(11), 2543–2550. Scopus. https://doi.org/10.1007/s10068-023-01507-7

Korkmaz, A., Talan, T., Ko?unalp, S., & Iliev, T. (2025). Comparison of deep learning models in automatic classification of coffee bean species. PeerJ Computer Science, 11. Scopus. https://doi.org/10.7717/peerj-cs.2759

Messias, E., Guimarães, C. V., da Luz, J. M. R., de Paulo, E. H., da Silva Oliveira, E. C. D. S., Nascimento, M. H. C., Ferrão, M. F., Guarçoni, R. C., Filgueiras, P. R., & Pereira, L. L. (2025). Study of the sensory profile of Coffea canephora through malting/fermentation using HS-SPME-GC?MS and synthetic sampling combined with random forest. Food Chemistry, 489. Scopus. https://doi.org/10.1016/j.foodchem.2025.144907

Motta, I. V. C., Vuillerme, N., Pham, H.-H., & Pereira de Figueiredo, F. A. P. (2025). Machine learning techniques for coffee classification: A comprehensive review of scientific research. Artificial Intelligence Review, 58(1). Scopus. https://doi.org/10.1007/s10462-024-11004-w

Niforatos, E., Ferwerda, B., Pop, M., & Schricker, M. (2024). Integrating Generative AI in the UX Design Process: An Empirical Perspective. Ekphrasis, 32(2), 114–122. Scopus. https://doi.org/10.24193/ekphrasis.32.7

Nunes, P. H., Pierangeli, E. V., de Oliveira Santos, M. O., de Oliveira Silveira, H. R. O., de Matos, C. S. M., Pereira, A. B., Alves, H. M. R., Volpato, M. M. L., Silva, V. A., & Ferreira, D. D. (2023). Predicting coffee water potential from spectral reflectance indices with neural networks. Smart Agricultural Technology, 4. Scopus. https://doi.org/10.1016/j.atech.2023.100213

Ozal, G., Ilyasova, C., & Ilgiz, V. (2024). Post-Harvest Storage and Processing Technology in Russia: Reducing Yield Loss. Agriculturae Studium of Research, 1(1), 28–49. https://doi.org/10.55849/agriculturae.v1i1.172

Paiva, A. C., Teixeira, C. A., & Hantao, L. W. (2024). Exploring accurate mass measurements in pixel-based chemometrics: Advancing coffee classification with GC-HRMS—A proof of concept study. Journal of Chromatography A, 1731. Scopus. https://doi.org/10.1016/j.chroma.2024.465171

Przyby?, K., Gawrysiak-Witulska, M., Bielska, P., Rusinek, R., Gancarz, M., Dobrza?ski, B., & Siger, A. (2023). Application of Machine Learning to Assess the Quality of Food Products—Case Study: Coffee Bean. Applied Sciences (Switzerland), 13(19). Scopus. https://doi.org/10.3390/app131910786

Qin, Y., Huo, S., González, A. M., Guo, L., Sanots, J., & Li, L. (2025). Research on Neuroimmune Gastrointestinal Diseases Based on Artificial Intelligence: Molecular Dynamics Analysis of Caffeine and DRD3 Protein. Current Pharmaceutical Biotechnology. Scopus. https://doi.org/10.2174/0113892010325902241120111429

Ricardo Mondragón Regalado, J., Huaman Montez, A., Marino Jara Llanos, D., Aguirre Baique, N., Reategui del Águila, K., Luz Basilio Maraví, G., Honorio Muñoz Berrocal, M., & Arévalo Reátegui, J. (2025). Agricultural Culture and Technological Civilization: Tarpuy and Artificial Intelligence in Coffee Disease Management. Revista Iberoamericana de Viticultura Agroindustria y Ruralidad, 36, 206–224. Scopus. https://doi.org/10.35588/8ajmqd10

Rogger, T., Jonathan, H., & Lindsey, K. (2024). Smart Fertilization Technology for Agricultural Efficiency in Canada. Agriculturae Studium of Research, 1(1), 56–70. https://doi.org/10.55849/agriculturae.v1i1.172

Sagita, D., Widodo, S., Mardjan, S. S., Purwandoko, P. B., Suparlan, n., Hariadi, H., & Darniadi, S. (2025). Rapid identification of coffee species and origin using affordable multi-channel spectral sensor combined with machine learning. Food Research International, 211. Scopus. https://doi.org/10.1016/j.foodres.2025.116501

Salamai, A. (2024). Towards automated, efficient, and interpretable diagnosis coffee leaf disease: A dual-path visual transformer network. Expert Systems with Applications, 255. Scopus. https://doi.org/10.1016/j.eswa.2024.124490

Salamai, A., & al-Nami, W. T. (2023). Sustainable Coffee Leaf Diagnosis: A Deep Knowledgeable Meta-Learning Approach. Sustainability (Switzerland), 15(24). Scopus. https://doi.org/10.3390/su152416791

Sander, J., Simon, P., & Hinske, C. (2024). Big data and artificial intelligence in anesthesia: Reality or fiction? Anaesthesiologie, 73(2), 77–84. Scopus. https://doi.org/10.1007/s00101-023-01362-5

Shin, B. (2025). Exploring the potential of machine learning to reduce administrative burden in participatory budgeting: A case study of Seoul. Journal of Public Budgeting, Accounting and Financial Management, 1–28. Scopus. https://doi.org/10.1108/JPBAFM-09-2024-0188

Silva, L. C. F., Pereira, P. V. R., Cruz, M. A. D. D., Costa, G. X. R., Rocha, R. A. R., Luiz Lima Bertarini, P. L. L., Amaral, L. R. D., Gomes, M. S., & Santos, L. D. (2024). Enhancing Sensory Quality of Coffee: The Impact of Fermentation Techniques on Coffea arabica cv. Catiguá MG2. Foods, 13(5). Scopus. https://doi.org/10.3390/foods13050653

Solis Pino, A. F. S., & Apraez, L. S. C. (2025). Artificial intelligence and multispectral imaging in coffee production: A systematic literature review. European Journal of Agronomy, 170. Scopus. https://doi.org/10.1016/j.eja.2025.127725

Vandeputte, J., Herold, P., Kuslii, M., Viappiani, P., Muller, L., Martin, C., Davidenko, O., Delaere, F., Manfredotti, C., Cornuéjols, A., & Darcel, N. (2023). Principles and Validations of an Artificial Intelligence-Based Recommender System Suggesting Acceptable Food Changes. Journal of Nutrition, 153(2), 598–604. Scopus. https://doi.org/10.1016/j.tjnut.2022.12.022

Vilela, E. F., Castro, G. D. M. D., Marin, D. B., Santana, C. C., Leite, D. H., Matos, C. D. S. M., Silva, C. A. D., Lopes, I. P. D. C., Queiroz, D. M. D., Silva, R. A., Rossi, G., Bambi, G., Conti, L., & Venzon, M. (2024). Remote Monitoring of Coffee Leaf Miner Infestation Using Machine Learning. AgriEngineering, 6(2), 1697–1711. Scopus. https://doi.org/10.3390/agriengineering6020098

Authors

Eddy Silamat
eddysilamat9@gmail.com (Primary Contact)
Khalil Zaman
Shazia Akhtar
Silamat, E., Zaman, K. ., & Akhtar, S. (2025). THE USE OF ARTIFICIAL INTELLIGENCE FOR PREDICTING COFFEE BEAN QUALITY BASED ON DIGITAL IMAGES AND SENSOR DATA. Techno Agriculturae Studium of Research, 2(3), 125–139. https://doi.org/10.70177/agriculturae.v2i3.2442

Article Details