Robotics in Surgery: Enhancing Precision, Safety, and Patient Outcomes
Abstract
Robotic-assisted surgery has revolutionized modern surgical practice by enhancing precision, reducing invasiveness, and improving patient outcomes. Traditional surgical techniques are often limited by human dexterity, fatigue, and the complexity of intricate procedures, which can increase the risk of complications and prolong recovery. Robotics offers advanced visualization, tremor filtration, and enhanced instrument control, enabling surgeons to perform complex procedures with greater accuracy and consistency. This study investigates the impact of robotic-assisted surgery on surgical precision, safety, and patient outcomes across multiple specialties. A systematic review and meta-analysis were conducted, synthesizing data from clinical trials, observational studies, and surgical outcome reports. Metrics analyzed included intraoperative precision, complication rates, operative time, postoperative recovery, and patient satisfaction. Results indicate that robotic surgery significantly reduces intraoperative errors, minimizes blood loss, shortens hospital stays, and enhances functional recovery compared to conventional techniques. Surgeons reported improved ergonomics and operative control, contributing to procedural consistency and reduced fatigue. The study concludes that robotics in surgery represents a critical advancement in surgical care, offering tangible benefits for both patients and clinicians. Successful integration requires continued training, technological refinement, and assessment of cost-effectiveness to ensure sustainable adoption. These findings support the expansion of robotic-assisted interventions as a standard of care in complex surgical procedures.
Full text article
References
Alade, A., Persad, M., Bitar, G., Dragan, A., Fotiadis, N., Shur, J., Wong, K. H., Ng-Cheng-Hin, B., Paleri, V., Harrington, K., & Ap Dafydd, D. A. (2025). A Review of Contemporary Image Guidance Techniques in Head and Neck Cancer. Head and Neck, 47(1), 394–399. Scopus. https://doi.org/10.1002/hed.27968
Arrey, E., Young, T., & Alford, A. (2025). A Comprehensive Review of the Evolution of Minimally Invasive Hernia Repair: Historical Milestones to Modern Clinical Practice. Current Surgery Reports, 13(1). Scopus. https://doi.org/10.1007/s40137-024-00435-7
Ashmore, A. A., & Ismail, A. (2025). A review of the use of robotic surgery in gynaecology with practical applications. Obstetrics, Gynaecology and Reproductive Medicine, 35(8), 226–233. Scopus. https://doi.org/10.1016/j.ogrm.2025.05.003
Bobade, S., Asutkar, S., Nagpure, D., & Kadav, A. (2025). A brief review of practical use of artificial intelligence in surgery in the current era. Multidisciplinary Reviews, 8(3). Scopus. https://doi.org/10.31893/multirev.2025085
Catelli, C., d’Alessandro, M., Mathieu, F., Corzani, R., Ghisalberti, M., Lloret Madrid, A., Guerrini, S., Paladini, P., & Luzzi, L. (2025). A Precision Surgery Framework for Lung Resection: Robotic, Video-Assisted, and Open Segmentectomy. Journal of Personalized Medicine, 15(8). Scopus. https://doi.org/10.3390/jpm15080387
Chareancholvanich, K., Pornrattanamaneewong, C., Udompanich, R., Awirotananon, K., & Narkbunnam, R. (2025). A comparative study of early postoperative pain: Robotic-assisted versus conventional total knee arthroplasty. International Orthopaedics, 49(6), 1359–1364. Scopus. https://doi.org/10.1007/s00264-025-06451-1
D’Angelo, G., Moawad, G. N., Di Spiezio-Sardo, A., Ascione, M., Danzi, R., Giampaolino, P., & Bifulco, G. (2025). 3D Imaging Reconstruction and Laparoscopic Robotic Surgery Approach to Disseminated Peritoneal Leiomyomatosis. Journal of Minimally Invasive Gynecology, 32(2), 111–112. Scopus. https://doi.org/10.1016/j.jmig.2024.10.003
Dong, Q., Zhu, X., Yang, Z., Xie, Y., Lei, J., & Cai, L. (2025). 3D printing combined with orthopedic robotics-assisted osteotomy for femurs: A case report. Medical Journal of Wuhan University, 46(1), 99–103. Scopus. https://doi.org/10.14188/j.1671-8852.2024.0037
Engesser, C., Brantner, P., Gahl, B., Walter, M., Gehweiler, J., Seifert, H., Subotic, S., Rentsch, C., Wetterauer, C., Bubendorf, L., Vlajnic, T., Hosseini, A., & Ebbing, J. (2025). 3D-printed model for resection of positive surgical margins in robot-assisted prostatectomy. BJU International, 135(4), 657–667. Scopus. https://doi.org/10.1111/bju.16595
Fujita, T., Yokoyama, K., Kawai, T., Uehara, N., Yamashita, T., Kamakura, T., Matsumoto, Y., Mizutari, K., Kakigi, A., Nibu, K.-I., Suzuki, H., & Nishikawa, A. (2025). A Robot for Transcanal Endoscopic Ear Surgery with Gimbal-based Rotational Linkage and Linear Guide Rail Mechanisms. Advanced Biomedical Engineering, 14, 146–154. Scopus. https://doi.org/10.14326/abe.14.146
Göbel, B., Richter, A., Rupitsch, S. J., Reiterer, A., & Möller, K. (2025). 3D-Scan hole detection for robot-assisted laparoscopic surgery. IFAC Journal of Systems and Control, 34. Scopus. https://doi.org/10.1016/j.ifacsc.2025.100336
Haworth, J., Sahu, M., Zhu, K., Hammond, J., Ishida, H., Munawar, A., Yang, R., & Taylor, R. (2025). A cooperatively controlled robotic system with active constraints for enhancing efficacy in bilateral sagittal split osteotomy. International Journal of Computer Assisted Radiology and Surgery, 20(7), 1307–1314. Scopus. https://doi.org/10.1007/s11548-025-03403-3
J Gil, R. J., Beyar, R., & Haude, M. (2025). A brief history and clinical use of robotic procedures in the cardiovascular system. Kardiologia Polska, 83(3), 262–268. Scopus. https://doi.org/10.33963/v.phj.105099
Jin, P., Zhang, S., Wang, X., Xu, L., Jiang, Y., Niu, T., & Zhao, W. (2025). A Highly Integrated High-Resolution Cone Beam CT System for Intraoperative Imaging in Minimally Invasive Cochlear Surgery. IEEE Transactions on Instrumentation and Measurement, 74. Scopus. https://doi.org/10.1109/TIM.2025.3606069
Kou, W., Zhou, R., Zhang, H., Cheng, J., Zhu, C., Kuang, S., Zhang, L., & Sun, L. (2025). A Method for Automatic Feature Points Extraction of Pelvic Surface Based on PointMLP_RegNet. CAAI Transactions on Intelligence Technology, 10(3), 716–727. Scopus. https://doi.org/10.1049/cit2.70003
Lancia, E., Marazzi, D., Apa, L., Trovalusci, F., Del Prete, Z., & Rizzuto, E. (2025). 3D Printed Specimens’ Elasticity for Cerebral Aneurysm Mock-Ups: A Characterization of the Instrumentation Uncertainty. 2025. Scopus. https://doi.org/10.1109/MeMeA65319.2025.11068009
Lei, Y., Jiang, M., Sugahara, Y., & Takeda, Y. (2025). A 3-dof parallel continuum robot with large orientation workspace: Modeling, simulation and experiment. Mechanism and Machine Theory, 206. Scopus. https://doi.org/10.1016/j.mechmachtheory.2024.105908
Li, Y., Li, X., Zhang, X., Cai, Y., Vander Poorten, E. V., & Rodriguez-Guerrero, C. (2025). 3D Visualization from Single-Chip Camera in Single Port Access Fetal Robotic Surgery. 2025, 225–231. Scopus. https://doi.org/10.1109/ISMR67322.2025.11025961
Londhe, S. B., Shah, R. V., Antao, N., Londhe, I., Shah, A. R., Namjoshi, Z., Baranwal, G., & Singh, D. (2025). A prospective study comparing sleep quality using Pittsburgh Sleep Quality Index at 8 weeks after robotic-assisted versus conventional total knee arthroplasty: A single-center study. Journal of Robotic Surgery, 19(1). Scopus. https://doi.org/10.1007/s11701-025-02339-9
Meza-Pantoja, A., Lawson, A. C., Caputo, C. C., Ge, J., Cohen, D. J., Krieger, A., & Saeidi, H. (2025). A Confidence-Based Shared Control Strategy for Robotic Electrosurgery. IEEE Transactions on Medical Robotics and Bionics, 7(2), 583–594. Scopus. https://doi.org/10.1109/TMRB.2025.3560400
Nazari, A. A., Catania, J., Sadeghian, S., Jalali, A., Masnavi, H., Janabi-Sharifi, F., & Zareinia, K. (2025). A Master-Follower Teleoperation System for Robotic Catheterisation: Design, Characterisation and Tracking Control. International Journal of Medical Robotics and Computer Assisted Surgery, 21(3). Scopus. https://doi.org/10.1002/rcs.70073
Pasquale, A., Ciarleglio, F. A., Marinelli, L., Viel, G., Valcanover, S., Salimian, N., Marcucci, S., Brolese, M., Beltempo, P., & Brolese, A. (2025). A Decade of Innovation: Short-Term Outcomes of 150 Robotic Liver Resections. Journal of Clinical Medicine, 14(18). Scopus. https://doi.org/10.3390/jcm14186530
Peloso, A., D’Alessandro, N., Zhang, X., Menciassi, A., & De Momi, E. (2025). A Robotic System With Path Planning and Visual Guidance for Teleoperated Left Atrial Appendage Closure. IEEE Robotics and Automation Letters, 10(9), 9304–9311. Scopus. https://doi.org/10.1109/LRA.2025.3592056
Roshanfar, M., He, C., Huang, L., Li, Z., Cheng, L., Podolsky, D. J., Looi, T., & Diller, E. (2025). 3-DoF Magnetically Actuated Robotic Manipulator for Precision Soft Tissue Resection (S. Haliyo, M. Boudaoud, D. J. Cappelleri, & S. Fatikow, Eds.). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/MARSS65887.2025.11072751
Sands, C., Jin, Y., Zhao, Z., Kirkland, F., & Price, M. (2025). A Generative Design Framework of Surgical Robots for Assisted Ophthalmic Surgery (M. A. Laribi, G. Carbone, D. Pisla, & S. Zeghloul, Eds.; Vol. 186, pp. 33–43). Springer Science and Business Media B.V.; Scopus. https://doi.org/10.1007/978-3-031-96081-9_4
Shah, K., Jadav, N. K., Gupta, R., Gupta, S., Tanwar, S., Rodrigues, J. J. P. C., Alqahtani, F., & Tolba, A. (2025). A deep learning-orchestrated garlic routing architecture for secure telesurgery operations in healthcare 4.0. Egyptian Informatics Journal, 30. Scopus. https://doi.org/10.1016/j.eij.2025.100662
Song, M., Li, Y., Liu, Y., & Yang, L. (2025). A multitask learning network with interactive fusion for surgical instrument segmentation. Knowledge-Based Systems, 317. Scopus. https://doi.org/10.1016/j.knosys.2025.113370
Sun, X., Ma, Z., Zhao, J., & Yi, B. (2025). A head-mounted mixed reality platform for robotic flexible endoscope control in minimally invasive cholecystectomy: An animal feasibility study. Journal of Robotic Surgery, 19(1), 670. Scopus. https://doi.org/10.1007/s11701-025-02866-5
Tu, Y., Jiang, J., Huang, J., Sui, J., & Yang, S. (2025). A review of wrist mechanism design and the application in gastrointestinal minimally invasive surgery of multi-degree-of-freedom surgical laparoscopic instruments. Surgical Endoscopy, 39(1), 99–121. Scopus. https://doi.org/10.1007/s00464-024-11406-5
Ur, K., ?ahin, H. M., Aksoy, T., Kizmazo?lu, C., & Erbayraktar, R. S. (2025). 3D-printed guide template for cervical stabilization surgery: A case report. Brain and Spine, 5. Scopus. https://doi.org/10.1016/j.bas.2025.104267
Wu, Z., Tong, D., Xie, H., Sun, L., Fan, X., & Yang, Z. (2025). A Portable 6-D Surgical Instrument Magnetic Localization System With Dynamic Error Correction. IEEE Sensors Journal, 25(15), 28219–28228. Scopus. https://doi.org/10.1109/JSEN.2025.3578907
Yang, L., Wang, H., Bian, G., & Liu, Y. (2025). A dense triple-level attention-based network for surgical instrument segmentation. Multimedia Tools and Applications, 84(19), 20803–20822. Scopus. https://doi.org/10.1007/s11042-024-19894-2
Zhang, Y., Yang, J., Huang, X., & He, C. (2025). A review of image guidance and localization methods for liver puncture robots. Journal of Robotic Surgery, 19(1). Scopus. https://doi.org/10.1007/s11701-025-02328-y