Artificial Intelligence in Precision Medicine: Transforming Genetic-Based Diagnostics and Patient Care
Abstract
Precision medicine aims to tailor healthcare strategies to individual genetic, environmental, and lifestyle factors, enhancing diagnostic accuracy and treatment efficacy. Traditional approaches to genetic-based diagnostics often face challenges such as high complexity, large-scale data interpretation, and time-intensive analyses. Artificial intelligence (AI) offers transformative potential by enabling rapid, data-driven analysis of genomic information, supporting personalized patient care, and improving clinical decision-making. This study investigates the role of AI in enhancing genetic-based diagnostics and patient care within precision medicine. A systematic review and critical analysis were conducted, integrating findings from peer-reviewed research, clinical reports, and AI-based diagnostic applications. The methodology focused on evaluating AI algorithms for genetic variant detection, risk prediction, and therapeutic recommendations, as well as assessing their clinical integration and outcomes. Results indicate that AI significantly improves the speed, accuracy, and interpretability of genomic analyses, facilitating early disease detection, individualized treatment planning, and predictive risk assessment. Challenges include data privacy, algorithmic transparency, and the need for robust validation in diverse populations. The study concludes that AI integration in precision medicine represents a pivotal advancement in genetic diagnostics and patient-centered care, offering scalable solutions for complex healthcare challenges. Ethical, regulatory, and technical considerations are essential to ensure safe, equitable, and effective implementation in clinical practice.
Full text article
References
Bando, H., Naito, Y., Yamada, T., Fujisawa, T., Imai, M., Sakamoto, Y., Saigusa, Y., Yamamoto, K., Tomioka, Y., Takeshita, N., Sunami, K., Futamura, M., Notake, C., Aoki, S., Okano, K., & Yoshino, T. (2025). A prospective study comparing highly qualified Molecular Tumor Boards with AI-powered software as a medical device. International Journal of Clinical Oncology, 30(2), 172–179. Scopus. https://doi.org/10.1007/s10147-024-02684-z
Brahmareddy, A., & Paul Selvan, M. P. (2025). ADVANCED CNN-BASED FRAMEWORKS FOR ROBUST AND EXPLAINABLE BREAST CANCER DIAGNOSIS ACROSS MULTI-MODAL IMAGING DATASETS. Journal of Theoretical and Applied Information Technology, 103(10), 4103–4114. Scopus.
Chitca, D.-D., Popescu, V., Dumitrescu, A., Botezatu, C., & Mastalier, B. (2025). Advancing Colorectal Cancer Diagnostics from Barium Enema to AI-Assisted Colonoscopy. Diagnostics, 15(8). Scopus. https://doi.org/10.3390/diagnostics15080974
Dey, D., Mukherjee, D. R., Shoeb, A., Biswas, P., & Santra, S. (2025). A SYSTEMATIC REVIEW OF ALZHEIMER’S DISEASE: EXPLORING GENETIC AND ENVIRONMENTAL RISK FACTORS, BIOMARKERS, AND FUTURE PHARMACOTHERAPY FOR COGNITIVE DECLINE AND NEURODEGENERATION. Journal of Applied Pharmaceutical Research, 13(3), 17–35. Scopus. https://doi.org/10.69857/joapr.v13i3.929
Dmitrieva, A. M., Kocak, I. G., & Meder, L. (2025). Aberrations in the glycosylation of receptor tyrosine kinases: A focus on lung adenocarcinoma. CytoJournal, 22. Scopus. https://doi.org/10.25259/Cytojournal_21_2025
Dorrich, M., Balk, M., Heusinger, T., Beyer, S., Mirbagheri, H., Fischer, D. J., Kanso, H., Matek, C., Hartmann, A., Iro, H., Eckstein, M., Gostian, A.-O., & Kist, A. M. (2025). A multimodal dataset for precision oncology in head and neck cancer. Nature Communications, 16(1). Scopus. https://doi.org/10.1038/s41467-025-62386-6
Elwadhi, A., Kandraju, H., & Sharma, S. (2025). Advances in Neonatal Seizures (2024): An Update for Pediatricians. Indian Pediatrics, 62(5), 386–390. Scopus. https://doi.org/10.1007/s13312-025-00050-4
Fan, Y., Pei, Y., Hu, D., Wu, Y., Sun, K., Chen, L., Yin, J., Yan, W., Shi, M., Feng, W., Liu, X., & Li, F. (2025). A Lifetime Nanosensor for In Vivo pH Quantitative Imaging and Monitoring. Small, 21(24). Scopus. https://doi.org/10.1002/smll.202502806
Ganesh, M. S., Revanth, R., & Mahesh Elaya Bharathi, C. (2025). Advanced Biomarkers and Precision Medicine: Innovative Strategies to Prevent Cancer Recurrence. Journal of Cancer Research Updates, 14, 1–11. Scopus. https://doi.org/10.30683/1929-2279.2025.14.01
Gulande, P., & Awale, R. (2025). A Hybrid mRMR-RSA Feature Selection Approach for Lung Cancer Diagnosis Using Gene Expression Data. Biomedical and Pharmacology Journal, 18, 257–270. Scopus. https://doi.org/10.13005/bpj/3086
Jeong, S., Shivakumar, M., Jung, S.-H., Won, H.-H., Nho, K., Huang, H., Davatzikos, C., Saykin, A. J., Thompson, P. M., Shen, L., Kim, Y. J., Kim, B.-J., Lee, S., & Kim, D. (2025). Addressing overfitting bias due to sample overlap in polygenic risk scoring. Alzheimer’s and Dementia, 21(4). Scopus. https://doi.org/10.1002/alz.70109
Kennedy, J. C., Vargas, S. O., Fishman, M. P., Alesi, N., Baek, S.-H., Khabibillin, D., Platt, C. D., Garcia-De-Alba, C., Agrawal, P. B., Carmichael, N. E., Henderson, L. A., Wehrman, A., Boland, S., Walther, T., Farese, R. V., Casey, A. M. H., Manis, J. P., Collen, L. V., Lvova, M., … Raby, B. A. (2025). A progranulin variant causing childhood interstitial lung disease responsive to anti-TNF-? biologic therapy. Med, 6(6). Scopus. https://doi.org/10.1016/j.medj.2025.100607
Kishore, P. R., Reddy, G. S. K., Shinjith, A., & Vikas, P. (2025). A New Approach for Sleeping Disorder Classification using Supervised Machine Learning Algorithms. 1100–1106. Scopus. https://doi.org/10.1109/ICPCSN65854.2025.11036074
Kulkarni, A. S., Khandelwal, S., Thakare, Y., Rangole, J., Kulkarni, M. B., & Bhaiyya, M. (2025). A Review on 3D-Printed Miniaturized Devices for Point-of-Care-Testing Applications. Biosensors, 15(6). Scopus. https://doi.org/10.3390/bios15060340
Méndez-Vidal, C., Bravo-Gil, N., Pérez-Florido, J., Marcos-Luque, I., Fernández, R. M., Fernández-Rueda, J. L., González-del Pozo, M., Martín-Sánchez, M., Fernández-Suárez, E., Mena, M., Carmona, R., Dopazo, J., Borrego, S., & Antiñolo, G. (2025). A genomic strategy for precision medicine in rare diseases: Integrating customized algorithms into clinical practice. Journal of Translational Medicine, 23(1). Scopus. https://doi.org/10.1186/s12967-025-06069-2
Michou, L., & Brown, J. P. (2025). Advances in the genetics of Paget’s disease of bone: From pathophysiology, diagnosis to clinical implications. Expert Review of Endocrinology and Metabolism. Scopus. https://doi.org/10.1080/17446651.2025.2564667
Mooghal, M., Shaikh, K., Shaikh, H., Khan, W., Siddiqui, M. S., Jamil, S., & Vohra, L. M. (2025). A literature review of radio-genomics in breast cancer: Lessons and insights for low and middle-income countries. Tumori, 111(4), 274–283. Scopus. https://doi.org/10.1177/03008916251356446
Oh, J. S., & Yu, J. (2025). A narrative review of unraveling pediatric diabetes: Precision diagnosis across type 1, type 2, monogenic, and syndromic subtypes. Pediatric Medicine, 8. Scopus. https://doi.org/10.21037/pm-25-70
Oliver, A. S., Sayeed, M. S., & Abdul Razak, S. F. A. (2025). A review of enhanced biosignature immunotherapy tools for predicting lung cancer immune phenotypes using deep learning. Discover Oncology, 16(1). Scopus. https://doi.org/10.1007/s12672-025-02771-1
Oxe, K. C., Rohrberg, K. S., Lassen, U., & Larsen, D. H. (2025). A High-Throughput ImmunoHistoFluorescence (IHF) Method for Sub-Nuclear Protein Analysis in Tissue. Cells, 14(14). Scopus. https://doi.org/10.3390/cells14141109
Putra, J., & Al-Ibraheemi, A. (2025). Advances in vascular anomalies: Refining classification in the molecular era. Histopathology, 86(7), 1032–1043. Scopus. https://doi.org/10.1111/his.15374
Ricchi, B., Jagana, V., Singh, E., Ochoa, M. T., Salamah, J., & Bisserier, M. (2025). Advances in diagnosis and patient profiling in pulmonary arterial hypertension for precision medicine. Therapeutic Advances in Respiratory Disease, 19. Scopus. https://doi.org/10.1177/17534666251367312
Saravanakumar, C., Marirajan, S., Pandian, A., & Durgadevi, K. (2025). Advancing Genomic Diagnostics: Fast Fourier Transform Optimization and Machine Learning in Huntington’s Disease Detection. Journal of Electronics, Electromedical Engineering, and Medical Informatics, 7(2), 283–294. Scopus. https://doi.org/10.35882/jeeemi.v7i2.650
Sridev, J., Deen, A. R., Younus Ali, M. Y., Ting, W.-T., Deen, M. J., & Howlader, M. M. R. (2025). Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics. Biosensors, 15(9). Scopus. https://doi.org/10.3390/bios15090626
Stark, Z., Byrne, A. B., Sampson, M. G., Lennon, R., & Mallett, A. J. (2025). A guide to gene–disease relationships in nephrology. Nature Reviews Nephrology, 21(2), 115–126. Scopus. https://doi.org/10.1038/s41581-024-00900-7
Wang, Y., Wu, X., Liu, Y., Zhang, J., Wang, L., & Luo, X. (2025). A wearable platform for biochemical sweat analysis using photonic crystal hydrogel. Analytica Chimica Acta, 1338. Scopus. https://doi.org/10.1016/j.aca.2024.343590