AI-Powered Decision Support Systems in Clinical Nursing Practice: Benefits and Ethical Considerations
Abstract
Rapid advancements in artificial intelligence (AI) have introduced new possibilities for enhancing clinical nursing practice through AI-powered decision support systems (DSS). Increasing patient complexity, rising workloads, and the demand for timely, evidence-based care underscore the need for technological tools that can assist nurses in clinical judgment, risk assessment, and care coordination. This study aims to examine the benefits and ethical considerations associated with the integration of AI-driven DSS in nursing practice, focusing on their impact on clinical efficiency, patient safety, and professional autonomy. A mixed-methods approach was employed, combining a systematic literature review with qualitative thematic analysis of documented nursing experiences across diverse healthcare settings. The findings reveal that AI-powered DSS improve accuracy in clinical decision-making, support early detection of patient deterioration, and reduce cognitive workload for nurses. The results also identify significant ethical challenges, including data privacy concerns, algorithmic bias, reduced human oversight, and potential shifts in nurse–patient relational dynamics. The study concludes that while AI-driven DSS offer substantial benefits for clinical nursing practice, their implementation must be guided by robust ethical frameworks, transparent governance, and continuous professional training to ensure responsible and equitable integration.
Full text article
References
Abi Khalil, C., Saab, A., Rahme, J., Bouaud, J., & Séroussi, B. (2025). Capabilities of computerized decision support systems supporting the nursing process in hospital settings: A scoping review. BMC Nursing, 24(1). Scopus. https://doi.org/10.1186/s12912-025-03272-w
Alexander, A. K., Martinez, I., Tefera, R., Beauchemin, M. P., Lawhon, V. M., Nichols, A., Rosenberg, A. R., Bhatia, S., & Johnston, E. E. (2025). Bereaved Parents’ Perspectives on Financial Toxicity at End of Life for Children with Cancer: A Qualitative Study. Journal of Pediatrics, 276. Scopus. https://doi.org/10.1016/j.jpeds.2024.114269
Almagharbeh, W. T., Alharrasi, M., Rony, M. K., Kabir, S., Ahmed, S. K., & Alrazeeni, D. M. (2025). Ethical and Institutional Readiness for Artificial Intelligence in Nursing: An Umbrella Review. International Nursing Review, 72(4). Scopus. https://doi.org/10.1111/inr.70111
Choi, H., Kim, Y., & Jang, W. (2025). Enhancing the Usability of Patient Monitoring Devices in Intensive Care Units: Usability Engineering Processes for Early Warning System (EWS) Evaluation and Design. Journal of Clinical Medicine, 14(9). Scopus. https://doi.org/10.3390/jcm14093218
Crowe, S., & Howard, A. F. (2025). Critical care nurses’ prioritisation of patient care, including delirium prevention and management strategies: A mixed-method study. Australian Critical Care, 38(3). Scopus. https://doi.org/10.1016/j.aucc.2024.101154
Feng, X., Li, P., Zhao, R., Li, W., Zhu, T., Hao, X., & Chen, G. (2025). Barriers and Enablers to Using a Mobile App–Based Clinical Decision Support System in Managing Perioperative Adverse Events Among Anesthesia Providers: Cross-Sectional Survey in China. Journal of Medical Internet Research, 27. Scopus. https://doi.org/10.2196/60304
Fontán-Vinagre, G., Ruiz-Núñez, C., Domínguez-Fernández, S., Ayuso-Murillo, D., & Herrera-Peco, I. (2025). Assessment of the Educational Needs of Spanish Nurses in the Care and Management of Patients with Diabetes. Healthcare (Switzerland), 13(5). Scopus. https://doi.org/10.3390/healthcare13050526
Gholipour, M., Dadashzadeh, A., Jabbarzadeh Tabrizi, F., & Sarbakhsh, P. (2025). Challenges of Clinical Decision-making in Emergency Nursing: An Integrative Review. Open Nursing Journal, 19. Scopus. https://doi.org/10.2174/0118744346378311250320070725
He, Y., Huang, J., Li, N., Zhou, G., & Liu, J. (2025). Artificial intelligence-driven prediction and interpretation of central line-associated bloodstream infections in ICU: insights from the MIMIC-IV database. Frontiers in Public Health, 13. Scopus. https://doi.org/10.3389/fpubh.2025.1675077
Johnson, L. G., Madandola, O. O., Dos Santos, F. C., Priola, K. J. B., Yao, Y., MacIeira, T. G. R., & Keenan, G. M. (2025). Creating Perinatal Nursing Care Plans Using ChatGPT: A Pathway to Improve Nursing Care Plans and Reduce Documentation Burden. Journal of Perinatal and Neonatal Nursing, 39(1), 10–19. Scopus. https://doi.org/10.1097/JPN.0000000000000831
Kawano, S., Eguchi, Y., Oosumi, A., Takeuchi, H., Takubo, M., Kimura, N., Nakano, N., Ryuzaki, T., Hayashida, K., Ieda, M., Uchida, H., Mimura, M., & Fujisawa, D. (2025). Establishment and clinical impacts of decision-support system for older patients with aortic valve stenosis: A retrospective observational study. General Hospital Psychiatry, 92, 106–111. Scopus. https://doi.org/10.1016/j.genhosppsych.2024.12.024
Levin, C., Suliman, M., Naimi, E., & Saban, M. (2025). Augmenting intensive care unit nursing practice with generative AI: A formative study of diagnostic synergies using simulation-based clinical cases. Journal of Clinical Nursing, 34(7), 2898–2907. Scopus. https://doi.org/10.1111/jocn.17384
Luo, M., Wu, Z., Hu, Z., Li, J., & Fan, Y. (2025). Best evidence summary for the management of exercise in patients with central venous access devices. Journal of Vascular Access, 26(6), 1959–1969. Scopus. https://doi.org/10.1177/11297298241311103
Lyu, G. (2025). Data-driven decision making in patient management: A systematic review. BMC Medical Informatics and Decision Making, 25(1). Scopus. https://doi.org/10.1186/s12911-025-03072-x
McEvoy, N. L., Credland, N., Cribbin, D., Curley, G. F., & Humphries, N. (2025). Critical Care Nursing Workforce Retention From an Irish Perspective: A National Survey. Nursing in Critical Care, 30(4). Scopus. https://doi.org/10.1111/nicc.70094
Mitchell, G., McMahon, J., Cook, L., McCloy, O., Tierney, P., Thompson, D. R., Creighton, L., Craig, S., Henderson, E., Hill, L., Cameron, J., Yu, D., Moser, D. K., Spilsbury, K., Srisuk, N., M G A Schols, J., van der Velden-Daamen, M., & Brown Wilson, C. (2025). Experiences of care home staff in the delivery of heart failure care: A grounded theory. BMC Geriatrics, 25(1). Scopus. https://doi.org/10.1186/s12877-025-06079-1
Palmer, S. J. (2025). Essential medical equipment in community nursing to support patient care at home. British Journal of Community Nursing, 30(9), 427–430. Scopus. https://doi.org/10.12968/bjcn.2025.0115
Porcel-Gálvez, A.-M., Lima-Serrano, M., Allande-Cussó, R., Costanzo-Talarico, M.-G., García, M.-D. M., Bueno Ferrán, M., Fernández García, E., D’Agostino, F., & Romero-Sánchez, J.-M. (2025). Enhancing nursing care through technology and standardized nursing language: The TEC-MED multilingual platform. International Journal of Nursing Knowledge, 36(4), 421–429. Scopus. https://doi.org/10.1111/2047-3095.12493
Saad, O., Saban, M., Kerner, E., & Levin, C. (2025). Augmenting Community Nursing Practice With Generative AI: A Formative Study of Diagnostic Synergies Using Simulation-Based Clinical Cases. Journal of Primary Care and Community Health, 16. Scopus. https://doi.org/10.1177/21501319251326663
Schmedding, L., Forbrig, T. A., & Gräske, J. (2025). Being a professional nurse until retirement – a qualitative interview study in Germany. BMC Nursing, 24(1). Scopus. https://doi.org/10.1186/s12912-025-03591-y
Tian, L., Liu, Y., Zhang, Z., Liu, J., Li, B., & Wang, P. (2025). Construction and Evaluation of Unplanned Extubation Assessment and Clinical Decision Support Information System. In M. Kadoch, M. Cheriet, & X. Qiu (Eds.), Commun. Comput. Info. Sci.: Vol. 2416 CCIS (pp. 428–435). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-96-6468-9_38
van Dongen, D., Tresfon, J., Guldenmund, F., Grossmann, I., Roos, D., & Groeneweg, J. (2025). Beyond the individual: A qualitative case study into the systemic determinants of speaking-up behaviour in multidisciplinary team meetings. BMJ Open Quality, 14(2). Scopus. https://doi.org/10.1136/bmjoq-2025-003335
Vincelette, C., Carrier, F. M., Bilodeau, C., & Chassé, M. (2025). Exploring intensive care unit nurses’ acceptance of clinical decision support systems and use of volumetric pump data: A qualitative description study. Nursing in Critical Care, 30(2). Scopus. https://doi.org/10.1111/nicc.13274
Vos, M., Stelwagen, M., Brinkhof, M., Eskes, A., Scheele, F., Hamelink, C., Pittens, C., & Essink, D. (2025). Experiences of Nurses With Power-Structures in Hospital Care: A Qualitative Study. Journal of Advanced Nursing. Scopus. https://doi.org/10.1111/jan.17044
Wang, W., Xiao, H., Liu, X., Kuang, W., Shen, F., Li, X., Yu, M., & Hu, L. (2025). Decision Fatigue among Nurses in a Third-Level Grade A Hospital in China: A Cross-Sectional Study on Prevalence and Predictors. International Nursing Review, 72(3). Scopus. https://doi.org/10.1111/inr.70095
Wheeler, M., Abbey, K. L., & Capra, S. M. (2025). Choice on the menu in residential aged care: An underrated tool for maintaining resident autonomy. Nutrition and Dietetics, 82(3), 327–336. Scopus. https://doi.org/10.1111/1747-0080.70002
Wieben, A., Steege, L., Brown, R., & Gilmore-Bykovskyi, A. (2025). Examining the Impact of Interface Design and Nurse Characteristics on Satisfaction With Machine Learning Decision Support Explanations. CIN - Computers Informatics Nursing, 43(8). Scopus. https://doi.org/10.1097/CIN.0000000000001323
Xu, X., Chen, M., Chen, L., Huang, K., Cao, S., Gao, W., Liu, K., Wu, B., & Mao, H. (2025). CKRT coagulation risk prediction and nursing feedback model based on intelligent algorithms. BMC Nephrology, 26(1). Scopus. https://doi.org/10.1186/s12882-025-04206-z
Yu, X., Wang, X., Hou, W., & Wang, Z. (2025). Establishing a fault management system for da Vinci robot-assisted laparoscopic surgery: Identification, troubleshooting, and rapid resumption. Journal of Robotic Surgery, 19(1). Scopus. https://doi.org/10.1007/s11701-025-02651-4
Zhang, Y., Wang, X., Li, Q., Zhang, R., Guo, S., Zhao, Y., Xiao, T., Luo, H., Han, S., & Yang, J. (2025). Career aspiration and influencing factors study of intern nursing students: A latent profile analysis. Nurse Education Today, 146. Scopus. https://doi.org/10.1016/j.nedt.2024.106546
Zhu, H., Liu, A., Han, Z., Yang, Y., Ma, X., & Shi, H. (2025). Best Evidence Summary of Home Enteral Tube Feeding Care Management in the Elderly. Patient Preference and Adherence, 19, 49–63. Scopus. https://doi.org/10.2147/PPA.S498890