A LAB-ON-A-CHIP DEVICE WITH INTEGRATED GOLD NANOSENSORS FOR THE ULTRASENSITIVE ELECTROCHEMICAL DETECTION OF DENGUE VIRUS BIOMARKERS

Andri Setiawan (1), Luis Santos (2), Josefa Flores (3)
(1) Universitas Teknologi Bandung, Indonesia,
(2) University of the Philippines Diliman, Philippines,
(3) Far Eastern University, Philippines

Abstract

Dengue fever is a significant global health threat, where rapid and accurate diagnosis is crucial for timely clinical intervention and outbreak management. Conventional diagnostic methods are often centralized, time-consuming, and require sophisticated equipment, limiting their utility in point-of-care (POC) settings. This study reports the development and validation of a novel lab-on-a-chip (LoC) device integrating gold nanosensors for the ultrasensitive electrochemical detection of the Dengue virus non-structural protein 1 (NS1). The microfluidic device was fabricated using soft lithography, and the gold electrode surfaces were functionalized with specific anti-NS1 monoclonal antibodies. Detection was performed using differential pulse voltammetry (DPV), measuring the change in current response upon immunocomplex formation. The developed immunosensor exhibited a wide linear dynamic range and an exceptionally low limit of detection (LoD) of 1.5 pg/mL for the NS1 antigen. Furthermore, the device demonstrated high selectivity against other interfering proteins. Our findings successfully establish a robust, miniaturized LoC platform for the rapid and highly sensitive detection of dengue biomarkers. This device holds significant potential as a powerful POC diagnostic tool for the early detection of dengue fever, particularly in resource-limited environments.


 

Full text article

Generated from XML file

References

Adekola, H. A., Wahab, K. A., Odunsi, O. E., Abesin, T. A., & Oyesanya, O. A. (2024). Current Diagnostics and Biomarkers for Arboviral Infections (a Review on Dengue, Zika, West Nile and Chikungunya Viruses). Voprosy Virusologii, 69(1), 31–41. Scopus. https://doi.org/10.36233/0507-4088-209

Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (n.d.). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Biomedical and Techno Nanomaterials, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453

Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404

Ataide, V. N., Pradela-Filho, L. A., Ameku, W. A., Negahdary, M., Oliveira, T. G., Santos, B. G., Longo Cesar Paixão, T. R. L. C., & Angnes, L. (2023). Paper-based electrochemical biosensors for the diagnosis of viral diseases. Microchimica Acta, 190(7). Scopus. https://doi.org/10.1007/s00604-023-05856-2

Balatsos, G., Blanco-Sierra, L., Karras, V., Puggioli, A., Osório, H. C., Bellini, R., Papachristos, D. P., Bouyer, J., Bartumeus, F., Papadopoulos, N. T., & Michaelakis, A. (2024). Residual Longevity of Recaptured Sterile Mosquitoes as a Tool to Understand Field Performance and Reveal Quality. Insects, 15(11). Scopus. https://doi.org/10.3390/insects15110826

Batool, N., Farooq, M. A., Jaleel, W., Noureldeen, A., Alghamdi, A., Darwesh, H., Ashri, N. H., & Naqqash, M. N. (2025). Impact of field evolved resistance on biological parameters of non-targeted Aedes aegypti populations. Ecotoxicology, 34(3), 381–391. Scopus. https://doi.org/10.1007/s10646-024-02842-z

Dakhave, M., Metkar, G., & Suryawanshi, H. (2023). Simultaneous detection and differentiation of dengue and chikungunya viruses for commercial utility. VirusDisease, 34(2), 248–256. Scopus. https://doi.org/10.1007/s13337-023-00822-1

Domínguez-Rojas, J., Cabrera-Rojas, L., Prado-Gómez, T., & Atamari-Anahui, N. (2024). Fulminant acute liver failure secondary to severe dengue in a child: Case report. Revista de Gastroenterologia del Peru, 44(2), 150–154. Scopus.

Dunuwila, D. M. A. P., Amarasinghe, Y. W. R., & Jayathilaka, W. A. D. M. (2023). Design and Simulation of a Novel MEMS Based Microfluidic Lab-on-a-Chip Device for Dengue Virus Detection. IECON Proceedings (Industrial Electronics Conference). Scopus. https://doi.org/10.1109/IECON51785.2023.10312117

Dutra, H. L. C., Marshall, D. J., Comerford, B., McNulty, B. P., Diaz, A. M., Jones, M. J., Mejia, A. J., Bjornstad, O. N., & McGraw, E. A. (2024). Larval crowding enhances dengue virus loads in Aedes aegypti, a relationship that might increase transmission in urban environments. PLOS Neglected Tropical Diseases, 18(9). Scopus. https://doi.org/10.1371/journal.pntd.0012482

Figueiredo, G., Chiaravalloti, F., Campos, S., Pellini, A. G., Félix, A. C., & de Albuquerque Luna, E. (2024). A spatial case-control study on symptomatic and inapparent primary dengue infections in an endemic city in Brazil. Revista Do Instituto de Medicina Tropical de Sao Paulo, 66. Scopus. https://doi.org/10.1590/S1678-9946202466012

Fortuna, C., Severini, F., Marsili, G., Toma, L., Amendola, A., Venturi, G., Argentini, C., Casale, F., Bernardini, I., Boccolini, D., Fiorentini, C., Hapuarachchi, H. C., Montarsi, F., & Di Luca, M. (2024). Assessing the Risk of Dengue Virus Local Transmission: Study on Vector Competence of Italian Aedes albopictus. Viruses, 16(2). Scopus. https://doi.org/10.3390/v16020176

Garcia, G. A., Lord, A. R., Santos, L. M. B., Kariyawasam, T. N., Rocha David, M. R., Couto-Lima, D., Tátila-Ferreira, A., Pavan, M. G., Sikulu-Lord, M. T., & Maciel-de-Freitas, R. (2023). Rapid and Non-Invasive Detection of Aedes aegypti Co-Infected with Zika and Dengue Viruses Using Near Infrared Spectroscopy. Viruses, 15(1). Scopus. https://doi.org/10.3390/v15010011

Gupta, D., & Gadre, A. (2024). Enhancing Mosquito Identification and Tracking with Object Detection and Citizen-Science Smartphone Imagery (A. G. Tescher & T. Ebrahimi, Eds.; Vol. 13137). SPIE; Scopus. https://doi.org/10.1117/12.3028328

Hasan, Mohd. R., Sharma, P., Khan, S., Mushtaq Naikoo, U., Bhalla, K., Abdin, M. Z., Malhotra, N., Aminabhavi, T. M., Shetti, N. P., & Narang, J. (2025). Dengue-virosensor: Advancement of dengue virus-based biosensors. Sensors & Diagnostics, 4(1), 7–23. https://doi.org/10.1039/D4SD00262H

Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442

Hehner, J., Ludenia, L., Bierau, L., Schöbel, A., Schauflinger, M., Grande, Y. F., Schwudke, D., & Herker, E. (2025). Dengue virus is particularly sensitive to interference with long-chain fatty acid elongation and desaturation. Journal of Biological Chemistry, 301(3). Scopus. https://doi.org/10.1016/j.jbc.2025.108222

Irfan, Z., Tariq, S., & Sarwar, M. F. (2025). Exploring the therapeutic potential of Polygonum aviculare L. compounds against Dengue virus through Computational methods. Journal of Herbal Medicine, 52. Scopus. https://doi.org/10.1016/j.hermed.2025.101027

Khaja, U. M., Bhat, A. H., Ahmed, M., Ali, A., & Ganie, S. A. (2023). Pharmacogenomics in viral diseases (pp. 247–269). Elsevier; Scopus. https://doi.org/10.1016/B978-0-443-15336-5.00006-3

Khan, M. H., Ahmad, S., Hashmi, I. B., & Badar, M. (2025). Nanosensors in medical microbiology. In Nanosensors in Healthcare Diagnostics (pp. 187–211). Elsevier. https://doi.org/10.1016/B978-0-443-19129-9.00013-3

Khan, M. M., Tahoun, M. M., Meredith, L. W., Barakat, A., Safi, H., Hanifi, A. N., Mashal, M. O., Amiri, A. W., & Abouzeid, A. (2023). Implementation and expansion of laboratory capacity for molecular diagnostics in response to COVID-19 and preparedness for other emerging infectious diseases in the Islamic Emirate of Afghanistan. Influenza and Other Respiratory Viruses, 17(11). Scopus. https://doi.org/10.1111/irv.13210

Kumaran, A., Jude Serpes, N., Gupta, T., James, A., Sharma, A., Kumar, D., Nagraik, R., Kumar, V., & Pandey, S. (2023). Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application. Biosensors, 13(2). Scopus. https://doi.org/10.3390/bios13020202

Kuswandi, B., Amalia, R., Pitaloka, D. A. E., Murti, B. T., & Hidayat, M. A. (2025). Electrochemical Nanobiosensors for Low-Cost Clinical Diagnosis. International Journal of Electrochemical Science, 101205. https://doi.org/10.1016/j.ijoes.2025.101205

Naderian, R., Paraandavaji, E., Maddah, A. H., Keshavarzi, S., Habibian, A., Naderian, R., Hosseini, S. M., Oksenych, V., & Eslami, M. (2025). Pathophysiology and clinical implications of dengue-associated neurological disorders. Frontiers in Microbiology, 16. Scopus. https://doi.org/10.3389/fmicb.2025.1536955

Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452

Pang, X., Xu, T., & Zheng, B. (2024). Research on the impact of type II dengue virus infection on the survival of Aedes albopictus. China Tropical Medicine, 24(2), 196–199. Scopus. https://doi.org/10.13604/j.cnki.46-1064/r.2024.02.14

R Prudencio, C. R., Gomes da Costa, V., Rocha, L. B., da Costa, H. H. M., Orts, D. J. B., da Silva Santos, F. R., Rahal, P., Lino, N. A. B., da Conceição, P. J. P., Bittar, C., Machado, R. R. G., Durigon, E. L., Araújo Júnior, J. P., Polatto, J. M., Silva, M. A., de Oliveira, J. A., Mitsunari, T., Pereira, L. R., Andreata-Santos, R., … Piazza, R. M. F. (2023). Identification of Zika Virus NS1-Derived Peptides with Potential Applications in Serological Tests. Viruses, 15(3). Scopus. https://doi.org/10.3390/v15030654

Raihan, M. F., Septiani, N. L. W., Gumilar, G., Manurung, R. V., Jenie, S. N. A., Nuruddin, A., & Yuliarto, B. (2025). Developing point-of-care diagnosis using electrochemical biosensor: Mosquito-borne disease. Sensors and Actuators Reports, 9, 100261. https://doi.org/10.1016/j.snr.2024.100261

Ramalingam, K., Balasubramanian, A., Muniappan, S., Rajagopal, K., & Andiappan, N. (2025). Novel inhibitors of dengue virus methyltransferase: Discovery by in vitro-driven virtual screening of fucoidan analogues, its synthesis, characterization, and potential in-vitro anti-dengue activity. Discover Applied Sciences, 7(5). Scopus. https://doi.org/10.1007/s42452-025-06867-9

Rocha, R. C., Cardoso, A. S., de Souza, J. L., Pereira, E. S., de Amorim, M. F., de Souza, M. S. M., Medeiros, C. L., Monteiro, M. F. M., Meneguetti, D. U. O., de Paula, M. B., Brilhante, A. F., & Lima-Camara, T. N. (2023). First official record of Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the Acre State, Northern Brazil. Revista Do Instituto de Medicina Tropical de Sao Paulo, 65. Scopus. https://doi.org/10.1590/S1678-9946202365020

Sachdeva, M., Sharma, K., & Arora, S. K. (2024). Multicolor Flow Cytometry in Medical Research: A Versatile Tool to Evaluate the Rare Immune Cells in the Pathogenesis of Chronic Viral Infections (pp. 263–274). Springer Singapore; Scopus. https://doi.org/10.1007/978-981-97-4553-1_14

Shih, H.-I., Wang, Y.-P., Chi, C.-Y., & Chien, Y.-W. (2024). Risks of anxiety disorders, depressive disorders, and sleep disorders in patients with dengue fever: A nationwide, population-based cohort study. PLOS Neglected Tropical Diseases, 18(7). Scopus. https://doi.org/10.1371/journal.pntd.0012239

Sinha, A., Savargaonkar, D., De, A., Tiwari, A., Yadav, C. P., & Anvikar, A. R. (2023). Joint Involvement Can Predict Chikungunya in a Dengue Syndemic Setting in India. Journal of Epidemiology and Global Health, 13(4), 895–901. Scopus. https://doi.org/10.1007/s44197-023-00163-8

Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406

Wang, Y., Troutman, M. C., Hofmann, C., Gonzalez, A., Song, L., Levin, R., Pixley, H. Y., Kearns, K., DePhillips, P., & Loughney, J. W. (2024). Fully automated high-throughput immuno-µPlaque assay for live-attenuated tetravalent dengue vaccine development. Frontiers in Immunology, 15. Scopus. https://doi.org/10.3389/fimmu.2024.1356600

Xie, L.-B., Liu, T., Fu, Y.-F., Jiang, S.-C., Zhang, Z.-W., & Yuan, S. (2023). Human Odour Attracts Anopheles and Culex Mosquitoes only Upon Sweating. Biology Bulletin, 50(6), 1356–1361. Scopus. https://doi.org/10.1134/S1062359023600745

Yin, M. S., Haddawy, P., Meth, P., Srikaew, A., Wavemanee, C., Niyom, S. L., Sriraksa, K., Limpitikul, W., Kittirat, P., Angkasekwinai, N., Navanukroh, O., Mapralub, A., Pakdee, S., Kaewpuak, C., Tangthawornchaikul, N., Malasit, P., Avirutnan, P., & Mairiang, D. (2025). Prognostic prediction of dengue hemorrhagic fever in pediatric patients with suspected dengue infection: A multi-site study. PLOS ONE, 20(8 August). Scopus. https://doi.org/10.1371/journal.pone.0327360

Zainul, R., Kharisma, V. D., Utami, S. L., Chandra, N., Ansori, A. N. M., Parikesit, A. A., Jakhmola, V., Syukri, D., Syafri, E., Wulandari, A. P., Illiandri, O., Nisyak, K., Bahrun, u., & Tasakka, A. C. M. A. R. (2024). A Viroinformatics Study: B-Cell Polytope Mapping of Envelope Protein to Develop Vaccine Candidate against Four DENV Serotype. Research Journal of Pharmacy and Technology, 17(3), 973–978. Scopus. https://doi.org/10.52711/0974-360X.2024.00150

Zhang, W., Cui, L., Wang, Y., Xie, Z., Wei, Y., Zhu, S., Nawaz, M., Mak, W.-C., Ho, H.-P., Gu, D., & Zeng, S. (2024). An Integrated ddPCR Lab-on-a-Disc Device for Rapid Screening of Infectious Diseases. Biosensors, 14(1). Scopus. https://doi.org/10.3390/bios14010002

Zhao, S. Y., Hughes, G. L., & Coon, K. L. (2023). A cryopreservation method to recover laboratory-and field-derived bacterial communities from mosquito larval habitats. PLOS Neglected Tropical Diseases, 17(4). Scopus. https://doi.org/10.1371/journal.pntd.0011234

Authors

Andri Setiawan
andrisetiawan@mail.com (Primary Contact)
Luis Santos
Josefa Flores
Setiawan, A. ., Santos, L. ., & Flores, J. . (2025). A LAB-ON-A-CHIP DEVICE WITH INTEGRATED GOLD NANOSENSORS FOR THE ULTRASENSITIVE ELECTROCHEMICAL DETECTION OF DENGUE VIRUS BIOMARKERS. Journal of Biomedical and Techno Nanomaterials, 2(3), 176–190. https://doi.org/10.70177/jbtn.v2i3.2479

Article Details