PHARMACEUTICAL NANOTECHNOLOGY: FORMULATION AND IN VIVO EVALUATION OF CURCUMIN-LOADED NANOSUSPENSIONS FOR ENHANCED ANTI-INFLAMMATORY EFFICACY

Elisa Issusilaningtyas (1), Sarah Williams (2), Muntasir Muntasir (3)
(1) Universitas Al-Irsyad Cilacap, Indonesia,
(2) University of Toronto, Canada,
(3) Universitas Nusa Cendana, Indonesia

Abstract

Curcumin, a natural polyphenol derived from Curcuma longa, is well-regarded for its potent anti-inflammatory properties. However, its therapeutic application is severely hampered by its extremely low aqueous solubility and poor oral bioavailability, which leads to suboptimal absorption and limited clinical efficacy. Pharmaceutical nanotechnology offers a promising strategy to overcome these biopharmaceutical challenges. This research aimed to formulate a stable curcumin nanosuspension to significantly enhance its dissolution rate and bioavailability, and to subsequently evaluate its improved anti-inflammatory efficacy in an in vivo model. A curcumin nanosuspension was prepared using the high-pressure homogenization technique, stabilized with Poloxamer 188. The formulation was characterized for particle size, polydispersity index (PDI), and zeta potential. An in vivo anti-inflammatory study was conducted using the carrageenan-induced paw edema model in Wistar rats, comparing the efficacy of the nanosuspension against a conventional coarse curcumin suspension. The optimized nanosuspension exhibited a narrow particle size distribution with a mean diameter of 210 nm and a zeta potential of -28.5 mV, indicating good physical stability. The in vivo evaluation demonstrated that the curcumin nanosuspension produced a significantly greater inhibition of paw edema (72.4%) compared to the coarse curcumin suspension (28.1%) at the same dose (p < 0.01). Formulating curcumin into a nanosuspension is a highly effective strategy for overcoming its inherent bioavailability limitations. This nanotechnological approach dramatically enhances curcumin’s anti-inflammatory activity, validating its potential as a powerful therapeutic agent for inflammatory conditions.

Full text article

Generated from XML file

References

Abdi Syahputra, R., Dalimunthe, A., Utari, Z. D., Halim, P., Sukarno, M. A., Zainalabidin, S., Salim, E., Gunawan, M., Nurkolis, F., Park, M. N., Luckanagul, J. A., Bangun, H., Kim, B., & Harahap, U. (2024). Nanotechnology and flavonoids: Current research and future perspectives on cardiovascular health. Journal of Functional Foods, 120, 106355. https://doi.org/10.1016/j.jff.2024.106355

Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (n.d.). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Biomedical and Techno Nanomaterials, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453

Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404

Aye, K. C., Rojanarata, T., Ngawhirunpat, T., Opanasopit, P., Pornpitchanarong, C., & Patrojanasophon, P. (2024). Development and characterization of curcumin nanosuspension-embedded genipin-crosslinked chitosan/polyvinylpyrrolidone hydrogel patch for effective wound healing. International Journal of Biological Macromolecules, 274. Scopus. https://doi.org/10.1016/j.ijbiomac.2024.133519

Azari Torbat, N., Akbarzadeh, I., Rezaei, N., Salehi Moghaddam, Z., Bazzazan, S., & Mostafavi, E. (2023). Curcumin-Incorporated Biomaterials: In silico and in vitro evaluation of biological potentials. Coordination Chemistry Reviews, 492, 215233. https://doi.org/10.1016/j.ccr.2023.215233

Banazadeh, M., Behnam, B., Ganjooei, N. A., Gowda, B. H. J., Kesharwani, P., & Sahebkar, A. (2023). Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy. Journal of Drug Delivery Science and Technology, 89, 105040. https://doi.org/10.1016/j.jddst.2023.105040

Bhadouria, N., Alam, A., & Kaur, A. (2025). Nanotechnology-based Herbal Drug Formulation in the Treatment of Diabetes Mellitus. Current Diabetes Reviews, 21(1), e310124226554. https://doi.org/10.2174/0115733998282162240116202813

Bhattacharjee, A., Thomas, S., & Palit, P. (2023). Nebulizer spray delivery of phytopharmaceutical nanosuspension via oral and nasal route. In Applications of Multifunctional Nanomaterials (pp. 437–457). Elsevier. https://doi.org/10.1016/B978-0-12-820557-0.00017-5

Boseila, A. A., Ghareeb, A. Z., AbdEl-Wahab, M. G., Seadawy, M. G., Al-Karmalawy, A. A., Yassa, N. W., & Ghareeb, D. A. (2024). Throat spray formulated with virucidal pharmaceutical excipients as an effective early prophylactic or treatment strategy against pharyngitis post-exposure to SARS-CoV-2. European Journal of Pharmaceutics and Biopharmaceutics, 199. Scopus. https://doi.org/10.1016/j.ejpb.2024.114279

Casula, L., Craparo, E. F., Lai, E., Scialabba, C., Valenti, D., Schlich, M., Sinico, C., Cavallaro, G., & Lai, F. (2024). Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin. Pharmaceuticals, 17(12). Scopus. https://doi.org/10.3390/ph17121708

Chaudhari, P., Lewis, S. A., & Ghate, V. (2025). Nanotechnology-based non-invasive strategies in ocular therapeutics: Approaches, limitations to clinical translation, and safety concerns. Contact Lens and Anterior Eye, 48(2), 102367. https://doi.org/10.1016/j.clae.2025.102367

D’Angelo, N. A., Noronha, M. A., Kurnik, I. S., Câmara, M. C. C., Vieira, J. M., Abrunhosa, L., Martins, J. T., Alves, T. F. R., Tundisi, L. L., Ataide, J. A., Costa, J. S. R., Jozala, A. F., Nascimento, L. O., Mazzola, P. G., Chaud, M. V., Vicente, A. A., & Lopes, A. M. (2021). Curcumin encapsulation in nanostructures for cancer therapy: A 10-year overview. International Journal of Pharmaceutics, 604, 120534. https://doi.org/10.1016/j.ijpharm.2021.120534

Desai, P. P., Date, A. A., & Patravale, V. B. (2012). Overcoming poor oral bioavailability using nanoparticle formulations – opportunities and limitations. Drug Discovery Today: Technologies, 9(2), e87–e95. https://doi.org/10.1016/j.ddtec.2011.12.001

Elbaz, N. M., Tatham, L. M., Owen, A., Rannard, S., & McDonald, T. O. (2023). Layer by layer self-assembly for coating a nanosuspension to modify drug release and stability for oral delivery. Food Hydrocolloids, 144. Scopus. https://doi.org/10.1016/j.foodhyd.2023.108908

Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442

Jabeen, N., Sohail, M., Mahmood, A., Ahmed Shah, S., Mohammad Qalawlus, A. H., & Khaliq, T. (2024). Nanocrystals loaded collagen/alginate-based injectable hydrogels: A promising biomaterial for bioavailability improvement of hydrophobic drugs. Journal of Drug Delivery Science and Technology, 91, 105291. https://doi.org/10.1016/j.jddst.2023.105291

Jansook, P., & Loftsson, T. (2022). Self-assembled ?-cyclodextrin as nanocarriers for enhanced ocular drug bioavailability. International Journal of Pharmaceutics, 618, 121654. https://doi.org/10.1016/j.ijpharm.2022.121654

Jurel, P., Bahadur, S., & Bajpai, M. (2024). Herbal based nanoemulsions in psoriasis therapy: A review. Pharmacological Research - Natural Products, 2, 100017. https://doi.org/10.1016/j.prenap.2024.100017

Krishnaswami, V., Mohanan, D. P., Raja, S. A. J., Natarajan, B., & Velusamy, S. (2024). Nanotechnology-based advancements for effective delivery of phytoconstituents for Ocular diseases. Nano TransMed, 3, 100056. https://doi.org/10.1016/j.ntm.2024.100056

Kurniawan, S. V., Louisa, M., Surini, S., Zaini, J., & Soetikno, V. (2025). Development and Characterization of Curcumin Nanosuspension Formulation for Pulmonary Drug Delivery. Research Journal of Pharmacy and Technology, 18(4), 1757–1764. Scopus. https://doi.org/10.52711/0974-360X.2025.00252

Liang, X. L., Lu, Y. F., Wang, X. L., Liao, Z. G., Zhao, G. W., & Dong, W. (2023). Preparation and characterization of curcumin nanocrystalline suspension and evaluation of its pharmaceutical properties in vitro and in vivo. Chinese Journal of New Drugs, 32(21), 2198–2209. Scopus.

Luo, K.-P., Yan, C.-M., Yang, L., Gu, H., Li, Q.-X., Li, Z.-B., Shi, M.-Y., & Li, X.-F. (2023). Preparation and in vitro evaluation of curcumin and silibinin co-loaded nanosuspension with glycyrrhizic acid as stabilizer. Chinese Traditional and Herbal Drugs, 54(15), 4823–4831. Scopus. https://doi.org/10.7501/j.issn.0253-2670.2023.15.007

Ma, L., Gao, H., Cheng, C., Cao, M., Zou, L., & Liu, W. (2023). Fabrication of emulsions using high loaded curcumin nanosuspension stabilizers: Enhancement of antioxidant activity and concentration of curcumin in micelles. Journal of Functional Foods, 110. Scopus. https://doi.org/10.1016/j.jff.2023.105858

Machmudah, S., Trisanti, P. N., Widiyastuti, W., Wahyudiono, u., Adschiri, T., & Goto, M. (2024). Liposomal encapsulation of curcumin employing soy lecithin in ultrasonic environment under dense carbon dioxide. Alexandria Engineering Journal, 109, 334–346. Scopus. https://doi.org/10.1016/j.aej.2024.09.015

Madeswaran, A., Tamilazhagan, S., & Mohan, S. (2024). In silico evaluation, characterization, and in vitro anticancer activity of curcumin–nimbin loaded nanoformulation in HCT-116 cell lines. Biotechnologia, 105(4), 355–365. Scopus. https://doi.org/10.5114/bta.2024.145256

Nsairat, H., Lafi, Z., Al-Sulaibi, M., Gharaibeh, L., & Alshaer, W. (2023). Impact of nanotechnology on the oral delivery of phyto-bioactive compounds. Food Chemistry, 424, 136438. https://doi.org/10.1016/j.foodchem.2023.136438

Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452

Patel, A., Jain, P., Thakur, A., & Ajazuddin. (2025). Recent Review on Herbs and Medicinal Plant-based Nanotechnological Approach in Treating Psoriasis. Current Bioactive Compounds, 21(3), e300524230528. https://doi.org/10.2174/0115734072312903240523060831

Pathak, K., Ahmad, M. Z., Saikia, R., Pathak, M. P., Sahariah, J. J., Kalita, P., Das, A., Islam, M. A., Pramanik, P., Tayeng, D., & Abdel-Wahab, B. A. (2025). Nanomedicine: A New Frontier in Alzheimer’s Disease Drug Targeting. Central Nervous System Agents in Medicinal Chemistry, 25(1), 3–19. https://doi.org/10.2174/0118715249281331240325042642

Qin, M., Ye, G., Xin, J., Li, M., Sui, X., Sun, Y., Fu, Q., & He, Z. (2023). Comparison of in vivo behaviors of intramuscularly long-acting celecoxib nanosuspensions with different particle sizes for the postoperative pain treatment. International Journal of Pharmaceutics, 636. Scopus. https://doi.org/10.1016/j.ijpharm.2023.122793

Raab, C., Brugger, S., Lechner, J.-S., Barbalho, G. N., Gratieri, T., Agarwal, P., Rupenthal, I. D., & Keck, C. M. (2024). Utilizing an Ex Vivo Skin Penetration Analysis Model for Predicting Ocular Drug Penetration: A Feasibility Study with Curcumin Formulations. Pharmaceutics, 16(10). Scopus. https://doi.org/10.3390/pharmaceutics16101302

Sampathi, S., Haribhau, C. J., Kuchana, V., Junnuthula, V., & Dyawanapelly, S. (2023). Nanosuspension encapsulated chitosan-pectin microbeads as a novel delivery platform for enhancing oral bioavailability. Carbohydrate Polymers, 319. Scopus. https://doi.org/10.1016/j.carbpol.2023.121177

Siddiquee, R., Lo, V., Johnston, C. L., Buffier, A. W., Ball, S. R., Ciofani, J. L., Zeng, Y. C., Mahjoub, M., Chrzanowski, W., Rezvani-Baboli, S., Brown, L., Pham, C. L. L., Sunde, M., & Kwan, A. H. (2023). Surface-Induced Hydrophobin Assemblies with Versatile Properties and Distinct Underlying Structures. Biomacromolecules, 24(11), 4783–4797. Scopus. https://doi.org/10.1021/acs.biomac.3c00542

Sivasankaran, L. G., Rahim, S., & Sreenivasan, A. T. (2025). Synthesis and Anticancer Activity Evaluation of Self- assembled Curcumin Loaded Gelatin ? Oleic acid – Carboxymethyl Chitosan Nanoparticles on MCF-7 cells. European Journal of Pharmaceutics and Biopharmaceutics, 211, 114718. https://doi.org/10.1016/j.ejpb.2025.114718

Sunita, Kaushik, R., Verma, K. K., & Parveen, R. (2025). Herbal Nanoformulations for Diabetes: Mechanisms, Formulations, and Clinical Impact. Current Diabetes Reviews, 21(3), e180324228072. https://doi.org/10.2174/0115733998288592240308073925

Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406

Ünal, E. D., Duymaz, E., Kavukcu, S. B., Senthil, S., Türkmen, G., Ba?aran, B., & Türkmen, H. (2025). Novel water-soluble gelatin-based platinum nanoparticles for targeted cancer therapy with enhanced cytotoxicity. Journal of Nanoparticle Research, 27(1). Scopus. https://doi.org/10.1007/s11051-024-06212-y

Varaprasad, K., Sisubalan, N., Jayaramudu, T., & Yallapu, M. M. (2024). Nanocurcumin: A new and improved way to fight cancer and infections. Nano-Structures & Nano-Objects, 40, 101352. https://doi.org/10.1016/j.nanoso.2024.101352

Vidlá?ová, L., Romero, G. B., Hanuš, J., Št?pánek, F., & Müller, R. H. (2016). Nanocrystals for dermal penetration enhancement – Effect of concentration and underlying mechanisms using curcumin as model. European Journal of Pharmaceutics and Biopharmaceutics, 104, 216–225. https://doi.org/10.1016/j.ejpb.2016.05.004

Wu, X., Hu, M., Cai, Y., Jia, F., Ye, Y., Yu, N., Chen, M., & Wang, K. (2025). Nano-based drug delivery systems for the treatment of non-infectious uveitis. Advances in Ophthalmology Practice and Research, 5(2), 124–134. https://doi.org/10.1016/j.aopr.2024.11.003

Authors

Elisa Issusilaningtyas
elisa12211@gmail.com (Primary Contact)
Sarah Williams
Muntasir Muntasir
Issusilaningtyas, E. ., Williams, S. ., & Muntasir, M. (2025). PHARMACEUTICAL NANOTECHNOLOGY: FORMULATION AND IN VIVO EVALUATION OF CURCUMIN-LOADED NANOSUSPENSIONS FOR ENHANCED ANTI-INFLAMMATORY EFFICACY. Journal of Biomedical and Techno Nanomaterials, 2(4), 206–220. https://doi.org/10.70177/jbtn.v2i4.2523

Article Details