AN INJECTABLE, THERMOSENSITIVE HYDROGEL AS A CELL DELIVERY VEHICLE FOR CARDIAC REGENERATIVE MEDICINE POST-MYOCARDIAL INFARCTION

T. Amirul Muttaqin (1), Rit Som (2), Anna Charalambous (3)
(1) Universitas Syiah Kuala, Indonesia,
(2) Songkhla University, Thailand,
(3) Frederick University, Cyprus

Abstract

Cell-based therapies for myocardial infarction (MI) are critically limited by poor acute cell retention and viability following direct injection. The harsh, ischemic microenvironment and mechanical washout result in massive cell death, neutralizing therapeutic potential and leading to failed clinical translation. This research aimed to design, synthesize, and evaluate a novel, injectable, thermosensitive hydrogel as a “pro-survival” cell delivery vehicle. The objective was to determine if this biomaterial could solve the critical failure points of retention and viability, thereby enhancing the therapeutic efficacy of mesenchymal stem cells (MSCs) post-MI. A composite hydrogel (Poloxamer/Hyaluronic Acid) was characterized in vitro for its rheological properties (LCST), mechanical stiffness, and cytoprotective capacity under ischemic stress. Its in vivo efficacy was then evaluated in a rat MI model (LAD ligation). The hydrogel+MSCs group (G5) was compared against controls (saline, MSCs-in-saline) via serial echocardiography and post-mortem histomorphometry. In vitro, the hydrogel confirmed ideal thermosensitivity (LCST 37.1°C) and cytoprotection (2.5-fold increase in ischemic cell survival). In vivo, the G5 (hydrogel+MSCs) group demonstrated significantly preserved cardiac function (LVEF 45.2%) compared to the MSCs-only group (G4: 34.1%) at 28 days. This was correlated with significantly reduced infarct size and enhanced border-zone angiogenesis. The thermosensitive hydrogel functions as an essential, enabling technology. It solves the critical failure points of acute retention and viability, demonstrating that an engineered “pro-survival” delivery vehicle is a prerequisite for the successful clinical translation of cardiac cell therapy.


 


 

Full text article

Generated from XML file

References

Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (n.d.). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Biomedical and Techno Nanomaterials, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453

Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404

Beena, M., & Palaniappan, A. (2025). 9—Hydrogels for cardiac tissue regeneration. In R. Jayakumar & A. K. Rajendran (Eds.), Hydrogel Tissue Analogues (pp. 249–285). Woodhead Publishing. https://doi.org/10.1016/B978-0-443-29260-6.00009-3

Beheshtizadeh, N., Gharibshahian, M., Bayati, M., Maleki, R., Strachan, H., Doughty, S., & Tayebi, L. (2023). Vascular endothelial growth factor (VEGF) delivery approaches in regenerative medicine. Biomedicine & Pharmacotherapy, 166, 115301. https://doi.org/10.1016/j.biopha.2023.115301

Deng, X., Wang, X., Xiao, W., Song, L., Guo, Q., Huang, K., & Wang, N. (2025). Extracellular matrix-mimetic hydrogel encapsulating myoblast exosomes attenuates muscle atrophy by targeting Nrf2-mitochondrial axis. Chemical Engineering Journal, 517, 164612. https://doi.org/10.1016/j.cej.2025.164612

Fu, Y., Wang, Y., Tian, Y., Xia, L., Liu, F., Su, Z., Dong, Z., & Cao, P. (2025). Bioinspired injectable hydrogels for microenvironment modulation in myocardial infarction: Recent advances and outlook. Materials Today Communications, 47, 113232. https://doi.org/10.1016/j.mtcomm.2025.113232

Guan, H., Chen, Y., Liu, X., & Huang, L. (2024). Research and application of hydrogel-encapsulated mesenchymal stem cells in the treatment of myocardial infarction. Colloids and Surfaces B: Biointerfaces, 239, 113942. https://doi.org/10.1016/j.colsurfb.2024.113942

Guan, H., & Zhang, Y. (2025). Applications of elastic and conductive hydrogels in myocardial infarction repair. Colloid and Interface Science Communications, 69, 100856. https://doi.org/10.1016/j.colcom.2025.100856

Halagali, P., Kiran Raj, G., Pokale, R., Osmani, R. A., Bhosale, R., Kazi, H., Wani, S. U. D., & Gowda, D. (2024). Chapter 8—Functionalized polysaccharide-based hydrogels: Spanking accession in tissue engineering and regenerative medicines. In S. Ahmed & A. Ali (Eds.), Polysaccharides-Based Hydrogels (pp. 215–264). Elsevier. https://doi.org/10.1016/B978-0-323-99341-8.00008-9

Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442

Hoang Thi, T. T., Laney, M., Zhang, H., Martinez, F., Lee, Y., & Jang, Y. C. (2024). Designing biofunctional hydrogels for stem cell biology and regenerative medicine applications. Journal of Industrial and Engineering Chemistry, 129, 69–104. https://doi.org/10.1016/j.jiec.2023.08.042

Ju, Y., Hu, Y., Yang, P., Xie, X., & Fang, B. (2023). Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Materials Today Bio, 18, 100522. https://doi.org/10.1016/j.mtbio.2022.100522

Kaur, H., Gogoi, B., Sharma, I., Das, D. K., Azad, M. A., Pramanik, D. D., & Pramanik, A. (2024). Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Molecular Pharmaceutics, 21(10), 4827–4848. https://doi.org/10.1021/acs.molpharmaceut.4c00595

Kazemi Asl, S., Rahimzadegan, M., & Ostadrahimi, R. (2023). The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydrate Polymers, 300, 120266. https://doi.org/10.1016/j.carbpol.2022.120266

Li, F., Gan, L., Yang, X., Tan, Z., Shi, H., Lai, C., & Zhang, D. (2025). Progress of AI assisted synthesis of polysaccharides-based hydrogel and their applications in biomedical field. International Journal of Biological Macromolecules, 287, 138643. https://doi.org/10.1016/j.ijbiomac.2024.138643

Li, M., Wang, S., Dong, H., Wang, M., Sun, Y., Bi, Y., Chen, L., Naseem, A., Jiang, H., Li, H., Yang, B., & Liu, Y. (2025). Harnessing natural products for myocardial infarction therapy: Mechanistic insights and translational opportunities. Pharmacological Research, 217, 107802. https://doi.org/10.1016/j.phrs.2025.107802

Li, Y., Liu, Z., Zheng, Z., Bai, L., Wang, W., Min, L., Hu, H., & Shi, Y. (2025). Hydrogel empowered extracellular vesicles isolation, detection, and delivery. Nano Today, 64, 102817. https://doi.org/10.1016/j.nantod.2025.102817

Liu, L., Chen, S., Song, Y., Cui, L., Chen, Y., Xia, J., Fan, Y., Yang, L., & Yang, L. (2025). Hydrogels empowered mesenchymal stem cells and the derived exosomes for regenerative medicine in age-related musculoskeletal diseases. Pharmacological Research, 213, 107618. https://doi.org/10.1016/j.phrs.2025.107618

Lohani, A., Saxena, R., Duarte, J. G., Khan, S., Figueiras, A., & Mascarenhas-Melo, F. (2025). Tailored polymeric hydrogels for regenerative medicine and drug delivery: From material design to clinical applications. International Journal of Pharmaceutics, 681, 125818. https://doi.org/10.1016/j.ijpharm.2025.125818

Lv, Q., Zhou, D., He, Y., Xu, T., Qiu, X., & Zeng, J. (2025). Engineering functional electroconductive hydrogels for targeted therapy in myocardial infarction repair. Bioactive Materials, 49, 172–192. https://doi.org/10.1016/j.bioactmat.2025.01.013

Ma, J., Feng, J., Zhang, X., Zou, Z., Li, Q., Lei, L., Dong, Z.-Z., & Lin, Z. (2025). Beyond static scaffolds: Glucose-responsive hydrogels as dynamic intelligent platform for tissue engineering. Materials & Design, 258, 114635. https://doi.org/10.1016/j.matdes.2025.114635

Nie, R., Zhang, Q.-Y., Feng, Z.-Y., Huang, K., Zou, C.-Y., Fan, M.-H., Zhang, Y.-Q., Zhang, J.-Y., Li-Ling, J., Tan, B., & Xie, H.-Q. (2024). Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. International Journal of Biological Macromolecules, 268, 131643. https://doi.org/10.1016/j.ijbiomac.2024.131643

Niu, H., Liu, Z., Guan, Y., Wen, J., Dang, Y., & Guan, J. (2025). Harnessing synergistic effects of MMP-2 Inhibition and bFGF to simultaneously preserve and vascularize cardiac extracellular matrix after myocardial infarction. Acta Biomaterialia, 191, 189–204. https://doi.org/10.1016/j.actbio.2024.10.050

Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452

Patel, G., & Patel, R. (2024). Chapter 11—Thermoresponsive hydrogel: A carrier for tissue engineering and regenerative medicine. In J. M. Oliveira, J. Silva-Correia, & R. L. Reis (Eds.), Hydrogels for Tissue Engineering and Regenerative Medicine (pp. 213–232). Academic Press. https://doi.org/10.1016/B978-0-12-823948-3.00009-9

Rahmati, S., Khazaei, M., Abpeikar, Z., Soleimanizadeh, A., & Rezakhani, L. (2024). Exosome-loaded decellularized tissue: Opening a new window for regenerative medicine. Journal of Tissue Viability, 33(2), 332–344. https://doi.org/10.1016/j.jtv.2024.04.005

Rakshit, P., Giri, T. K., & Mukherjee, K. (2024). Progresses and perspectives on natural polysaccharide based hydrogels for repair of infarcted myocardium. International Journal of Biological Macromolecules, 269, 132213. https://doi.org/10.1016/j.ijbiomac.2024.132213

Sarvepalli, S., Pasika, S. R., Vadarevu, S., Bolla, S., & Bolla, P. K. (2025). A comprehensive review on injectable hydrogels for cell therapy. Journal of Drug Delivery Science and Technology, 105, 106648. https://doi.org/10.1016/j.jddst.2025.106648

Tian, B., Liu, J., Guo, S., Li, A., & Wan, J.-B. (2023). Macromolecule-based hydrogels nanoarchitectonics with mesenchymal stem cells for regenerative medicine: A review. International Journal of Biological Macromolecules, 243, 125161. https://doi.org/10.1016/j.ijbiomac.2023.125161

Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406

Tohidi, H., Maleki, N., & Simchi, A. (2024). Conductive, injectable, and self-healing collagen-hyaluronic acid hydrogels loaded with bacterial cellulose and gold nanoparticles for heart tissue engineering. International Journal of Biological Macromolecules, 280, 135749. https://doi.org/10.1016/j.ijbiomac.2024.135749

van de Looij, S. M., de Jong, O. G., Vermonden, T., & Lorenowicz, M. J. (2023). Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration. Journal of Controlled Release, 355, 685–708. https://doi.org/10.1016/j.jconrel.2023.01.060

Wang, W., He, L., Li, X., Zhou, Z., Xia, Z., Xia, Z., Dong, Q., & Li, J. (2025). Gelatin-based hydrogel patch by promoting M2 macrophage polarization to reduce inflammation and fibrosis alleviate post-myocardial infarction ventricular remodeling. International Journal of Biological Macromolecules, 322, 146652. https://doi.org/10.1016/j.ijbiomac.2025.146652

Wu, Z., Li, W., Cheng, S., Liu, J., & Wang, S. (2023). Novel fabrication of bioengineered injectable chitosan hydrogel loaded with conductive nanoparticles to improve therapeutic potential of mesenchymal stem cells in functional recovery after ischemic myocardial infarction. Nanomedicine: Nanotechnology, Biology and Medicine, 47, 102616. https://doi.org/10.1016/j.nano.2022.102616

Xu, Q., Xiao, Z., Yang, Q., Yu, T., Deng, X., Chen, N., Huang, Y., Wang, L., Guo, J., & Wang, J. (2024). Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Materials Today Bio, 25, 100978. https://doi.org/10.1016/j.mtbio.2024.100978

Yao, Y., Li, G., Liu, Z., Wang, B., Yang, X., & Wang, J. (2025). Long-term delivery of salvianolic acid B via injectable chitosan thermosensitive hydrogel for the treatment of steroid-induced osteoporosis. Journal of Drug Delivery Science and Technology, 105, 106649. https://doi.org/10.1016/j.jddst.2025.106649

Yin, B., Gosecka, M., Bodaghi, M., Crespy, D., Youssef, G., Dodda, J. M., Wong, S. H. D., Imran, A. B., Gosecki, M., Jobdeedamrong, A., Afzali Naniz, M., & Zolfagharian, A. (2024). Engineering multifunctional dynamic hydrogel for biomedical and tissue regenerative applications. Chemical Engineering Journal, 487, 150403. https://doi.org/10.1016/j.cej.2024.150403

Zare, I., Mirshafiei, M., Kheilnezhad, B., Far, B. F., Hassanpour, M., Pishbin, E., Eftekhar Vaghefi, S. S., Yazdian, F., Rashedi, H., Hasan, A., Wang, X., Adeli, M., & Makvandi, P. (2024). Hydrogel-integrated graphene superstructures for tissue engineering: From periodontal to neural regeneration. Carbon, 223, 118970. https://doi.org/10.1016/j.carbon.2024.118970

Zhang, T., Zhong, X.-C., Feng, Z.-X., Lin, X.-Y., Chen, C.-Y., Wang, X.-W., Guo, K., Wang, Y., Chen, J., Du, Y.-Z., Zhuang, Z.-M., Wang, Y., & Tan, W.-Q. (2025). An active shrinkage and antioxidative hydrogel with biomimetic mechanics functions modulates inflammation and fibrosis to promote skin regeneration. Bioactive Materials, 45, 322–344. https://doi.org/10.1016/j.bioactmat.2024.11.028

Zhao, Y., Dong, H., Xia, Q., Wang, Y., Zhu, L., Hu, Z., Xia, J., Mao, Q., Weng, Z., Yi, J., Feng, S., Jiang, Y., Liao, W., & Xin, Z. (2024). A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomedicine & Pharmacotherapy, 172, 116238. https://doi.org/10.1016/j.biopha.2024.116238

Zheng, Q., Yao, J., Sun, Z., Mao, Y., Wei, J., Xie, Y., Hu, X. K., & Li, X. (2024). Hydrogels as carriers deliver stem cells/exosomes for liver injury. Materials Advances, 5(9), 3587–3601. https://doi.org/10.1039/d3ma01046e

Authors

T. Amirul Muttaqin
teukuamirul@gmail.com (Primary Contact)
Rit Som
Anna Charalambous
Muttaqin, T. A., Som, R. ., & Charalambous, A. . (2025). AN INJECTABLE, THERMOSENSITIVE HYDROGEL AS A CELL DELIVERY VEHICLE FOR CARDIAC REGENERATIVE MEDICINE POST-MYOCARDIAL INFARCTION. Journal of Biomedical and Techno Nanomaterials, 2(4), 236–251. https://doi.org/10.70177/jbtn.v2i4.2661

Article Details