DEVELOPMENT OF PH-RESPONSIVE POLYMERIC MICELLES FOR TARGETED DOXORUBICIN DELIVERY TO HYPOXIC TUMOR MICRO-ENVIRONMENTS

Fathimath Saida (1), Jigme Dorji (2), David Ríos (3)
(1) The Maldives National University, Maldives,
(2) Bhutan Institute of Medical Sciences, Bhutan,
(3) University of the Valley of Sula, Honduras

Abstract

Hypoxic tumor micro-environments are characterized by abnormal vascularization and acidic extracellular pH, which significantly reduce the effectiveness of conventional chemotherapy and contribute to therapeutic resistance. Doxorubicin, although widely used, suffers from severe systemic toxicity and limited selectivity toward hypoxic tumor regions. This study aims to develop pH-responsive polymeric micelles capable of selectively delivering doxorubicin to hypoxic tumor micro-environments by exploiting endogenous acidity as a biological trigger. An experimental laboratory-based design was employed involving the synthesis of amphiphilic block copolymers, micelle self-assembly, physicochemical characterization, and in vitro biological evaluation under normoxic and hypoxic conditions. Particle size, stability, drug loading, and pH-dependent release behavior were systematically assessed, followed by cytotoxicity, cellular uptake, and three-dimensional tumor spheroid studies. The developed micelles exhibited uniform nanoscale size, high encapsulation efficiency, minimal drug leakage at physiological pH, and accelerated drug release under mildly acidic conditions representative of hypoxic tumors. Enhanced intracellular doxorubicin accumulation, deeper tumor penetration, and significantly increased cytotoxicity under hypoxia were observed compared to non-responsive micelles and free drug. These findings demonstrate that pH-responsive polymeric micelles provide an effective and biologically informed platform for targeted chemotherapy in hypoxic tumor micro-environments, offering promising potential for improving therapeutic efficacy while reducing systemic toxicity.


 

Full text article

Generated from XML file

References

Ahirwar, K., Kumar, A., Srivastava, N., Saraf, S. A., & Shukla, R. (2024). Harnessing the potential of nanoengineered siRNAs carriers for target responsive glioma therapy: Recent progress and future opportunities. International Journal of Biological Macromolecules, 266, 131048. https://doi.org/10.1016/j.ijbiomac.2024.131048

Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (n.d.). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Biomedical and Techno Nanomaterials, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453

Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404

Blanco-Fernandez, B., Diaz-Rodriguez, P., Concheiro, A., & Alvarez-Lorenzo, C. (2025). Chapter 5—Stimuli responsive hydrogels in drug delivery and biomedicine. In A. J. Paredes, E. Larrañeta, G. Laverty, & R. F. Donnelly (Eds.), Hydrogels in Drug Delivery (pp. 135–219). Elsevier. https://doi.org/10.1016/B978-0-443-22017-3.00003-2

Carvalho, L. T., Lopes, L. R., Cesquim, M. G., Machado, W. F., da Silva, M. B., Vieira, T. A., Vasquez, R., Donato, G. D., & Medeiros, S. F. (2026). Chapter 17—Polymers (natural and artificial) for theranostic applications. In A. Elaissari, S. Khizar, & E. A. Al-Suhaimi (Eds.), Micro and Nano Colloids and Their Biomedical Applications (pp. 513–568). Elsevier. https://doi.org/10.1016/B978-0-443-26608-9.00009-3

Cui, Y., Hong, S., Jiang, W., Li, X., Zhou, X., He, X., Liu, J., Lin, K., & Mao, L. (2024). Engineering mesoporous bioactive glasses for emerging stimuli-responsive drug delivery and theranostic applications. Bioactive Materials, 34, 436–462. https://doi.org/10.1016/j.bioactmat.2024.01.001

George Joy, J., Sharma, G., & Kim, J.-C. (2024). Tailoring polymeric nanocarriers for hypoxia-specific drug release: Insights into design and applications in clinics. Chemical Engineering Journal, 496, 153978. https://doi.org/10.1016/j.cej.2024.153978

Gong, Z., Zhou, D., Wu, D., Han, Y., Yu, H., Shen, H., Feng, W., Hou, L., Chen, Y., & Xu, T. (2025). Challenges and material innovations in drug delivery to central nervous system tumors. Biomaterials, 319, 123180. https://doi.org/10.1016/j.biomaterials.2025.123180

Gore, S., Are, V., Chanchlani, B., Shishira, PS., & Biswas, S. (2025). Multifunctional nanoplatforms for combined photothermal and photodynamic therapy: Tumor-responsive strategies for enhanced precision. International Journal of Pharmaceutics, 684, 126131. https://doi.org/10.1016/j.ijpharm.2025.126131

Guo, W., Gao, S., Hao, Y., Li, Z., Hu, H., Wu, H., Hu, C., Cheng, X., Zhao, W., Kong, Y., Jiang, H., & Wang, S. (2025). Ultrasound-responsive diagnostic and therapeutic micro-/nanoplatforms for biomedical applications and clinical translation. Ultrasonics Sonochemistry, 121, 107524. https://doi.org/10.1016/j.ultsonch.2025.107524

Gupta, U., Kosey, S., & Pal, R. (2025). Advancements in nanotechnology-based targeted drug delivery systems for glioblastoma chemotherapy: A comprehensive review. Journal of Drug Delivery Science and Technology, 111, 107181. https://doi.org/10.1016/j.jddst.2025.107181

Hajebi, S., Chamanara, M., Nasiri, S. S., Ghasri, M., Mouraki, A., Heidari, R., & Nourmohammadi, A. (2024). Advances in stimuli-responsive gold nanorods for drug-delivery and targeted therapy systems. Biomedicine & Pharmacotherapy, 180, 117493. https://doi.org/10.1016/j.biopha.2024.117493

Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442

Joshi, D. C., Prasad, S., Bhati, V., Sharma, P. K., Joshi, N., Durgapal, S., Chavan, M. B., Maurya, V. K., Subramaniyan, V., Paudel, K. R., & Gupta, M. (2026). Revolutionizing cancer treatment: Nanotherapeutics targeting the tumor micro-environment. Colloids and Surfaces B: Biointerfaces, 258, 115204. https://doi.org/10.1016/j.colsurfb.2025.115204

Kesharwani, P., Chandra, J., Karim, S., Gupta, G., Karwasra, R., & Sharma, A. (2024). ?v?3 integrin targeting RGD peptide-based nanoparticles as an effective strategy for selective drug delivery to tumor microenvironment. Journal of Drug Delivery Science and Technology, 96, 105663. https://doi.org/10.1016/j.jddst.2024.105663

Lai, L., Han, X., Tang, Y., Zhou, J., & Cui, W. (2026). Advances in ultrasound-assisted drug delivery and clinical application. Ultrasonics Sonochemistry, 124, 107557. https://doi.org/10.1016/j.ultsonch.2025.107557

Li, Y., Li, Y., Tan, Y., Cai, Y., Liu, X., Wei, C., Yu, W., Fu, Y., & Cao, H. (2025). Engineered nanotechnology for epigenetic therapy in cancer treatment. Chemical Engineering Journal, 525, 170485. https://doi.org/10.1016/j.cej.2025.170485

Madineh, H., Mansourinia, F., Zarrintaj, P., Poostchi, M., Gnatowski, P., Kucinska-Lipka, J., Ghaffari, M., Hasanin, M. S., Chapi, S., Yazdi, M. K., Ashrafizadeh, M., B?czek, T., Saeb, M. R., & Wang, G. (2025). Stimuli-responsive delivery systems using carbohydrate polymers: A review. International Journal of Biological Macromolecules, 310, 142648. https://doi.org/10.1016/j.ijbiomac.2025.142648

Mahmoodi, M., Nouri, M., Ghodousi, M., Mohseni, A., Ebrahimzadeh, M. A., Heidari, A., Ebrahimi, S., Pishbin, E., Rahdar, A., & Pandey, S. (2025). Unveiling the therapeutic potential of ultrasound-responsive micro/nanobubbles in cancer management. Inorganic Chemistry Communications, 172, 113765. https://doi.org/10.1016/j.inoche.2024.113765

Mishra, V., Chattaraj, A., Kumar, B., & Mishra, Y. (2025). Chapter 1—Dendrimeric polymers-based nanobiosystems for targeted drug delivery. In V. Mishra, C. M. Hussain, & Y. Mishra (Eds.), Intelligent Nanobiosystems in Medicine and Healthcare, Volume 2 (pp. 1–32). Academic Press. https://doi.org/10.1016/B978-0-323-90254-0.00001-5

Musa, M., Sun, X., Shi, J., Li, J., Zhang, S., & Shi, X. (2025). Intelligent responsive nanogels: New Horizons in cancer therapy. International Journal of Pharmaceutics, 669, 125050. https://doi.org/10.1016/j.ijpharm.2024.125050

Nguyen, V.-A. T., Huang, C.-C., & Chen, Y. (2026). Gas-based therapeutics and delivery platforms in cancer immunotherapy. Advanced Drug Delivery Reviews, 229, 115746. https://doi.org/10.1016/j.addr.2025.115746

Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452

Payamifar, S., Khalili, Y., Foroozandeh, A., Abdouss, M., & Hasanzadeh, M. (2025). Magnetic mesoporous silica nanoparticles as advanced polymeric scaffolds for efficient cancer chemotherapy: Recent progress and challenges. RSC Advances, 15(20), 16050–16074. https://doi.org/10.1039/d5ra00948k

Peng, Y., Wu, X., Liu, H., Yang, F., Cheng, X., Miao, M., Chen, S., Yan, K., Zheng, H., Cheng, H., & Liu, G. (2026). Hydrogel-based tumor embolization and synergistic therapeutic strategies. Bioactive Materials, 59, 17–44. https://doi.org/10.1016/j.bioactmat.2025.12.031

Raval, H., & Bhattacharya, S. (2025). Exploring the Potentials of Hyaluronic Acid-coated Polymeric Nanoparticles in Enhanced Cancer Treatment by Precision Drug Delivery, Tackling Drug Resistance, and Reshaping the Tumour Micro Environment. Current Medicinal Chemistry, 32(20), 3960–3999. https://doi.org/10.2174/0109298673302510240328050115

Sahu, P., & Satapathy, T. (2026). Liver targeted nanomedicine for treatment of fibrosis and hepatocellular carcinoma: Emerging strategies in ligand-guided, stimuli-responsive and gene-based delivery. Journal of Drug Delivery Science and Technology, 116, 107935. https://doi.org/10.1016/j.jddst.2025.107935

Shao, X., Wang, J., Li, P., & Fan, Y. (2025). Recent advances in stimuli-responsive microrobots for biomedical applications. Materials Today Chemistry, 50, 103103. https://doi.org/10.1016/j.mtchem.2025.103103

Srivastava, A., Ahmad, A., Siddiqui, S., & Islam, A. (2026). Innovations in targeted drug delivery: From nanotechnology to clinical applications. Next Nanotechnology, 9, 100336. https://doi.org/10.1016/j.nxnano.2025.100336

Srivastava, R. (2025). Stimuli-responsive nanomaterials for the precision delivery of mRNA cancer vaccines. Nano Trends, 11, 100147. https://doi.org/10.1016/j.nwnano.2025.100147

Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406

Yang, Y., Liang, X., Saiding, Q., Lin, J., Li, J., Wang, W., Huang, P., Huang, L., Zeng, W., Huang, J., Chen, H., Tao, W., & Zeng, X. (2024). Light-activated polymeric crosslinked nanocarriers as a checkpoint blockade immunoregulatory platform for synergistic tumor therapy. Materials Today, 80, 1–22. https://doi.org/10.1016/j.mattod.2024.07.012

Yu, H., Li, Z., Wang, W., Wei, C., Liu, L., Liu, C., Sun, Y., & Yan, M. (2024). Application of nanoscale metal-organic coordination polymers in cancer therapy. Chemical Engineering Journal, 496, 154342. https://doi.org/10.1016/j.cej.2024.154342

Yuan, F., Peng, D., Lu, M., Zhang, K., Mi, P., & Xu, J. (2025). Ultrasound-responsive nanocarriers for cancer therapy: Physiochemical features-directed design. Journal of Controlled Release, 388, 114353. https://doi.org/10.1016/j.jconrel.2025.114353

Zhu, X., Zhang, P., Liu, D., Tao, L., Du, J., & Gao, X. (2024). Stimuli-responsive 19F MRI probes: From materials design to in vitro detection and in vivo diagnosis. TrAC Trends in Analytical Chemistry, 172, 117607. https://doi.org/10.1016/j.trac.2024.117607

Authors

Fathimath Saida
fathimathsaida@gmail.com (Primary Contact)
Jigme Dorji
David Ríos
Saida, F., Dorji, J. ., & Ríos, D. . (2025). DEVELOPMENT OF PH-RESPONSIVE POLYMERIC MICELLES FOR TARGETED DOXORUBICIN DELIVERY TO HYPOXIC TUMOR MICRO-ENVIRONMENTS. Journal of Biomedical and Techno Nanomaterials, 2(4), 252–264. https://doi.org/10.70177/jbtn.v2i4.2973

Article Details