LIPID NANOPARTICLE-MEDIATED MRNA DELIVERY FOR A NOVEL UNIVERSAL VACCINE AGAINST INFLUENZA VIRUS SUBTYPES

Lakshan Pradeep (1), Kumudu Wijerathna (2), Dilshan Perera (3)
(1) a:1:{s:5:"en_US";s:28:"Open University of Sri Lanka";}, Sri Lanka,
(2) University of Sri Jayewardenepura, Sri Lanka,
(3) University of Colombo, Sri Lanka

Abstract

Influenza viruses continue to pose a major global health challenge due to rapid antigenic drift and shift, which limit the effectiveness of seasonal, strain-specific vaccines. Current vaccine strategies require frequent reformulation and often fail to provide broad and durable protection against diverse influenza virus subtypes. This study aims to develop a lipid nanoparticle–mediated mRNA delivery platform encoding conserved influenza antigens as a novel universal vaccine strategy. An experimental preclinical design was employed, involving in vitro transcription of mRNA, formulation into lipid nanoparticles, physicochemical characterization, and immunological evaluation in animal models. Particle size, encapsulation efficiency, mRNA expression, and stability were systematically assessed, followed by analysis of humoral and cellular immune responses and heterologous viral challenge studies. The mRNA–LNP vaccine exhibited uniform nanoscale properties, high mRNA integrity, and efficient antigen expression. Immunization induced robust cross-reactive antibody responses and strong CD4? and CD8? T-cell activation against multiple influenza subtypes. Vaccinated subjects demonstrated reduced viral loads, attenuated disease severity, and improved survival following heterologous influenza challenge. These findings indicate that lipid nanoparticle–mediated mRNA delivery of conserved influenza antigens represents a promising and adaptable platform for universal influenza vaccination, with significant potential to enhance pandemic preparedness and long-term influenza control.


 

Full text article

Generated from XML file

References

Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (n.d.). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Biomedical and Techno Nanomaterials, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453

Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404

Bahrami, Y., Bolideei, M., Mohammadzadeh, S., Gahrouei, R. B., Mohebbi, E., Haider, K. H., Barzigar, R., & Mehran, M. J. (2025). Applications of artificial intelligence and nanotechnology in vaccine development. International Journal of Pharmaceutics, 684, 126096. https://doi.org/10.1016/j.ijpharm.2025.126096

Bahrulolum, H., Rouzbahani, F. N., Hoseini, Z. S., Chaharmahali, M., & Hosseini, S. M. (2025). CircRNA: Unlocking new frontiers in therapeutic and vaccine development. Molecular Therapy. https://doi.org/10.1016/j.ymthe.2025.10.038

Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442

Henríquez, R., & Muñoz-Barroso, I. (2024). Viral vector- and virus-like particle-based vaccines against infectious diseases: A minireview. Heliyon, 10(15), e34927. https://doi.org/10.1016/j.heliyon.2024.e34927

Hillery, A. M. (2025). Chapter 7—Further therapeutic applications of mRNA and saRNA. In A. M. Hillery (Ed.), mRNA Therapeutics (pp. 187–216). Academic Press. https://doi.org/10.1016/B978-0-443-28934-7.00007-8

Hu, X., Li, C., Shao, C., Zhi, H., Gao, Y., & Xue, X. (2025). CD26 acts as a host restriction factor to inhibit Influenza A virus (H1N1) infection. International Journal of Biological Macromolecules, 330, 148150. https://doi.org/10.1016/j.ijbiomac.2025.148150

Jaishwal, P., Jha, K., & Singh, S. P. (2024). Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. International Journal of Biological Macromolecules, 277, 134012. https://doi.org/10.1016/j.ijbiomac.2024.134012

Jia, Y., Zhou, Z., Jiramonai, L., Chen, J., Hua, Q., Zhu, M., Zhang, J., & Liang, X.-J. (2025). Biocompatible lipid nanovehicles for preventive and therapeutic vaccine development. Coordination Chemistry Reviews, 538, 216718. https://doi.org/10.1016/j.ccr.2025.216718

Jones, C. H., Hauguel, T., Beitelshees, M., Davitt, M., Welch, V., Lindert, K., Allen, P., True, J. M., & Dolsten, M. (2024). Deciphering immune responses: A comparative analysis of influenza vaccination platforms. Drug Discovery Today, 29(9), 104125. https://doi.org/10.1016/j.drudis.2024.104125

Kaushik, M., Madeswaraguptha, P., Vanangamudi, M., Surendran, V., Ashique, S., Islam, A., Mojgani, N., & Hussain, A. (2025). Chapter Seven—Recent progress, challenges (stability and in vivo distribution), and opportunities of DNA & mRNA vaccine in cancer immunotherapy. In A. K. Singh, N. Mishra, S. Ashique, & P. K. Prabhakar (Eds.), Advances in Immunology (Vol. 166, pp. 211–258). Academic Press. https://doi.org/10.1016/bs.ai.2024.10.008

Lavelle, E. C., & McEntee, C. P. (2024). Vaccine adjuvants: Tailoring innate recognition to send the right message. Immunity, 57(4), 772–789. https://doi.org/10.1016/j.immuni.2024.03.015

Liu, X., Wang, S., Sun, Y., Liao, Y., Jiang, G., Sun, B.-Y., Yu, J., & Zhao, D. (2025). Unlocking the potential of circular RNA vaccines: A bioinformatics and computational biology perspective. eBioMedicine, 114, 105638. https://doi.org/10.1016/j.ebiom.2025.105638

Lu, K., He, J., Hong, C., Li, H., Ruan, J., Wang, J., Yuan, H., Rong, B., Yang, C., Song, G., & Liu, S. (2025). A novel C-3-substituted oleanolic acid benzyl amide derivative exhibits therapeutic potential against influenza A by targeting PA–PB1 interactions and modulating host macrophage inflammation. Acta Pharmaceutica Sinica B, 15(8), 4156–4173. https://doi.org/10.1016/j.apsb.2025.05.031

Malik, S., Asghar, M., & Waheed, Y. (2024). Outlining recent updates on influenza therapeutics and vaccines: A comprehensive review. Vaccine: X, 17, 100452. https://doi.org/10.1016/j.jvacx.2024.100452

Matthys, A., & Saelens, X. (2024). Promises and challenges of single-domain antibodies to control influenza. Antiviral Research, 222, 105807. https://doi.org/10.1016/j.antiviral.2024.105807

Maziec, K., Baliga-Gil, A., & Kierzek, E. (2025). Delivery strategies for RNA-targeting therapeutic nucleic acids and RNA-based vaccines against respiratory RNA viruses: IAV, SARS-CoV-2, RSV. Molecular Therapy Nucleic Acids, 36(3), 102572. https://doi.org/10.1016/j.omtn.2025.102572

Muzammil, K., Sabah Ghnim, Z., Saeed Gataa, I., Fawzi Al-Hussainy, A., Ali Soud, N., Adil, M., Ali Shallan, M., & Yasamineh, S. (2024). NRF2-mediated regulation of lipid pathways in viral infection. Molecular Aspects of Medicine, 97, 101279. https://doi.org/10.1016/j.mam.2024.101279

Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452

Oladejo, M., Tijani, A. O., Puri, A., & Chablani, L. (2024). Adjuvants in cutaneous vaccination: A comprehensive analysis. Journal of Controlled Release, 369, 475–492. https://doi.org/10.1016/j.jconrel.2024.03.045

Park, J. K., Lee, E. B., & Winthrop, K. L. (2024). What rheumatologists need to know about mRNA vaccines: Current status and future of mRNA vaccines in autoimmune inflammatory rheumatic diseases. Annals of the Rheumatic Diseases, 83(6), 687–695. https://doi.org/10.1136/ard-2024-225492

Patel, D. H., Talele, D., & Talele, C. (2025). Chapter 4—Gene delivery using viral vectors. In A. Shahiwala & N. Surti (Eds.), Challenges in Delivery of Therapeutic Genomics and Proteomics (Second Edition) (pp. 137–188). Academic Press. https://doi.org/10.1016/B978-0-443-27416-9.00010-1

Qi, L., Li, Z., Feng, Z., Liu, J., & Chen, X. (2025). Pioneering next-generation mRNA therapeutics through molecular engineering and delivery optimization. Materials Today, 90, 466–494. https://doi.org/10.1016/j.mattod.2025.08.023

Sahu, G., Kumari, P., & Goyal, A. K. (2024). Chapter 2—Vaccines and sera. In U. Gupta & A. K. Goyal (Eds.), Molecular Pharmaceutics and Nano Drug Delivery (pp. 15–62). Academic Press. https://doi.org/10.1016/B978-0-323-91924-1.00009-5

Shi, T., Ye, Y., Fan, Z., Yang, Q., Ma, Y., & Zhu, J. (2025). Respiratory mucosal vaccines: Applications, delivery strategies and design considerations. Biomedicine & Pharmacotherapy, 189, 118326. https://doi.org/10.1016/j.biopha.2025.118326

Taaffe, J., Ostrowsky, J. T., Mott, J., Goldin, S., Friede, M., Gsell, P., & Chadwick, C. (2024). Advancing influenza vaccines: A review of next-generation candidates and their potential for global health impact. Vaccine, 42(26), 126408. https://doi.org/10.1016/j.vaccine.2024.126408

Tang, W., Wu, Q., Liang, A., Shi, J., Chen, J., Zhu, X., & Mao, L. (2025). The promise of mRNA vaccines in cancer treatment: Technology, innovations, applications, and future directions. Critical Reviews in Oncology/Hematology, 212, 104772. https://doi.org/10.1016/j.critrevonc.2025.104772

Tang, X., Deng, J., He, C., Xu, Y., Bai, S., Guo, Z., Du, G., Ouyang, D., & Sun, X. (2025). Application of in-silico approaches in subunit vaccines: Overcoming the challenges of antigen and adjuvant development. Journal of Controlled Release, 381, 113629. https://doi.org/10.1016/j.jconrel.2025.113629

Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406

Tian, Y., Deng, Z., Chuai, Z., Li, C., Chang, L., sun, F., Cao, R., Yu, H., Xiao, R., Lu, S., Xu, Y., & Yang, P. (2024). A combination influenza mRNA vaccine candidate provided broad protection against diverse influenza virus challenge. Virology, 596, 110125. https://doi.org/10.1016/j.virol.2024.110125

Vu, M. N., Pilapitiya, D., Kelly, A., Koutsakos, M., Kent, S. J., Juno, J. A., Tan, H.-X., & Wheatley, A. K. (2025). Deconvolution of cargo delivery and immunogenicity following intranasal delivery of mRNA lipid nanoparticle vaccines. Molecular Therapy Nucleic Acids, 36(2), 102547. https://doi.org/10.1016/j.omtn.2025.102547

Wang, N., Liu, X., Ma, X., & Wang, T. (2024). Chapter 12—Liposomes as vaccine delivery systems. In S. G. Antimisiaris (Ed.), Liposomes in Drug Delivery (pp. 275–302). Academic Press. https://doi.org/10.1016/B978-0-443-15491-1.00009-2

Wang, Y., Zu, M., Li, B., Reis, R. L., Kundu, S. C., & Xiao, B. (2025). Application of bacterial extracellular vesicles in gastrointestinal diseases. Trends in Biotechnology, 43(12), 3005–3019. https://doi.org/10.1016/j.tibtech.2025.05.022

?ak, M. M., & Zangi, L. (2025). Clinical development of therapeutic mRNA applications. Molecular Therapy, 33(6), 2583–2609. https://doi.org/10.1016/j.ymthe.2025.03.034

Zhang, G., & Ren, L. (2025). Emerging challenges and advances in porcine viral pathogenesis: A decade in review. Animals and Zoonoses. https://doi.org/10.1016/j.azn.2025.06.002

Authors

Lakshan Pradeep
lakshanpradeep@gmail.com (Primary Contact)
Kumudu Wijerathna
Dilshan Perera
Pradeep, L., Wijerathna, K. ., & Perera, D. . (2025). LIPID NANOPARTICLE-MEDIATED MRNA DELIVERY FOR A NOVEL UNIVERSAL VACCINE AGAINST INFLUENZA VIRUS SUBTYPES. Journal of Biomedical and Techno Nanomaterials, 2(5), 275–288. https://doi.org/10.70177/jbtn.v2i5.2974

Article Details