BIOMIMETIC MINERALIZATION OF HYDROXYAPATITE ON A COLLAGEN-NANOFIBER COMPOSITE SCAFFOLD FOR BONE TISSUE ENGINEERING APPLICATIONS

Murat Arslan (1), Aylin Erdo?an (2), Baran Akbulut (3)
(1) Istanbul University, Turkey,
(2) Ege University, Turkey,
(3) Istanbul Technical University, Turkey

Abstract

Bone tissue engineering seeks to develop biomaterial scaffolds that can replicate the complex hierarchical structure and biological functionality of native bone extracellular matrix. Conventional bone substitutes often fail to simultaneously achieve sufficient mechanical strength, osteoconductivity, and biological integration, limiting their effectiveness in repairing critical-sized bone defects. This study aims to develop a collagen–nanofiber composite scaffold functionalized through biomimetic mineralization of hydroxyapatite to enhance its suitability for bone tissue engineering applications. An experimental biomaterials approach was employed, involving fabrication of collagen nanofiber scaffolds followed by controlled biomimetic mineralization in simulated physiological conditions. The resulting scaffolds were characterized for morphology, mineral composition, crystallinity, and mechanical properties, and subsequently evaluated in vitro using osteogenic cell models to assess cell adhesion, proliferation, differentiation, and matrix mineralization. The mineralized scaffolds exhibited uniform nanoscale hydroxyapatite deposition, physiologically relevant Ca/P ratios, and significantly enhanced mechanical stiffness compared to non-mineralized controls. Biological assays demonstrated improved osteogenic cell attachment, elevated alkaline phosphatase activity, and increased calcium deposition on mineralized scaffolds. These findings indicate that biomimetic mineralization effectively integrates inorganic and organic phases to produce a scaffold that closely mimics native bone structure and function. In conclusion, collagen–nanofiber scaffolds mineralized with hydroxyapatite using a biomimetic approach represent a promising platform for bone tissue engineering and warrant further in vivo investigation.


 

Full text article

Generated from XML file

References

Alahdad, N., Yazdanpanah, M. A., Amiri, M., Alamdari, M. I., Khoshzaban, A., Torabizadeh, A., Rezayat, S. M., & Tavakol, S. (2025). Self-assembling peptide nanofibers as growth factor-mimicking scaffolds enhancing the bone regeneration potential of nanoceramics: A triad of in vitro, in vivo, and clinical trial studies. RSC Advances, 15(52), 44356–44372. https://doi.org/10.1039/d5ra06036b

Alex, Y., Vincent, S., Divakaran, N., Uthappa, U. T., Srinivasan, P., Mubarak, S., Al-Harthi, M. A., & Dhamodharan, D. (2024). Pioneering bone regeneration: A review of cutting-edge scaffolds in tissue engineering. Bioprinting, 43, e00364. https://doi.org/10.1016/j.bprint.2024.e00364

Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (n.d.). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Biomedical and Techno Nanomaterials, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453

Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404

Cai, P., Ding, Y., Wang, C., Wu, J., Hart, M. L., Rolauffs, B., Mo, X., & Sun, B. (2025). Advancing biomimetic bone Scaffolds: From electrospun 2D membranes to functional 3D nanofiber constructs. Biomedical Technology, 11, 100099. https://doi.org/10.1016/j.bmt.2025.100099

Chen, X., Cheng, Y., Li, Y., Tan, Z., & Wu, H. (2025). 3D-printed vancomycin-eluting PGCL/MXene bifunctional scaffold for management of infected bone defects. Materials Today Bio, 32, 101847. https://doi.org/10.1016/j.mtbio.2025.101847

Chopra, V., Fuentes-Velasco, V., Nacif-Lopez, S. R., Melendez-Malpicca, J., Mendez-Hernandez, A. S., Ramos-Mendez-Iris, L. F., Arroyo-Jimenez, D. A., Reyes-Segura, D. G., Gonzalez-Y-Mendoza, P., Sanchez-Hernandez, K. A., Spinola-Corona, E., Vazquez-del-Mercado-Pardiño, J. A., & Chauhan, G. (2024). Advancements in 3D-4D printing of hydroxyapatite composites for bone tissue engineering. Ceramics International, 50(20, Part B), 38819–38840. https://doi.org/10.1016/j.ceramint.2024.07.266

Eltarahony, M., Jestrzemski, D., & Hassan, M. A. (2025). A comprehensive review of recent advancements in microbial-induced mineralization: Biosynthesis and mechanism, with potential implementation in various environmental, engineering, and medical sectors. Science of The Total Environment, 978, 179426. https://doi.org/10.1016/j.scitotenv.2025.179426

Farajpour, H., Ghorbani, M., Moghaddam, M. M., & Goodarzi, V. (2024). Surface modification of 3D-printed polycaprolactone-human decellularized bone matrix composite scaffold by plasma for bone tissue engineering. Bioprinting, 44, e00378. https://doi.org/10.1016/j.bprint.2024.e00378

Feng, Z., Qiu, S., Michálek, M., Zhou, Y., Gou, H., Li, L., Zheng, K., & Xu, Y. (2025). Anti-inflammatory and osteogenic nanofibrous scaffolds of bioactive glass/carboxymethyl chitosan-reinforced PCL short fibers for alveolar bone regeneration. International Journal of Biological Macromolecules, 323, 147197. https://doi.org/10.1016/j.ijbiomac.2025.147197

Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442

Hsu, F.-Y., Hsu, T.-F., Pan, W.-L., & Tsai, S.-W. (2025). Anisotropic composite scaffolds containing strontium-substituted hydroxyapatite nanofibers and collagen as bone substitutes. Polymer Testing, 149, 108875. https://doi.org/10.1016/j.polymertesting.2025.108875

Jansuwan, J., Chaivitayangkul, S., Khemphet, J., & Tangboriboon, N. (2025). Bioactive hydroxyapatite-sodium silicate waterglass reinforced with nanocollagen from Chitala ornata fish skin for bone engineering. International Journal of Biological Macromolecules, 327, 147287. https://doi.org/10.1016/j.ijbiomac.2025.147287

J.P, J., Sekhar, G. C., Jose, S., & Sumathi, S. (2025). Polyvinyl alcohol/ tri-metal doped hydroxyapatite composites for bone tissue engineering applications. Materials Chemistry and Physics, 339, 130705. https://doi.org/10.1016/j.matchemphys.2025.130705

Krishnan, A., Raghu, S., Eswaramoorthy, R., & Perumal, G. (2025). Biodegradable glutamic acid loaded polycaprolactone nanofibrous scaffold for controlled dentin mineralization. Journal of Drug Delivery Science and Technology, 104, 106546. https://doi.org/10.1016/j.jddst.2024.106546

Li, N., Qian, Y., Luo, Y., Guan, T., Lu, S., Zhang, F., Shen, Y., Han, M., & Wang, X. (2025). Naringin-Loaded mineralized Tussah silk nanofiber scaffolds with radial porosity for enhanced bone regeneration. Materials & Design, 259, 114926. https://doi.org/10.1016/j.matdes.2025.114926

Liu, X., Wang, B., Ma, J., & Hu, H. (2025). 3D-printed heterogeneous biomimetic scaffold utilizing TEMPO-oxidized and mineralized bacterial cellulose nanofibers for osteochondral regeneration. Carbohydrate Polymers, 370, 124366. https://doi.org/10.1016/j.carbpol.2025.124366

Mei, D., Li, N., Yan, K., Wang, J., Li, X., You, R., & Wang, D. (2025). Natural Silk Nanofibril-Directed Mineralization for Biomimetic Scaffolds. Biomacromolecules. https://doi.org/10.1021/acs.biomac.5c01006

Mirghaffari, M., Mahmoodiyan, A., Mahboubizadeh, S., Shahbazi, A., Soleimani, Y., Mirghaffari, S., & Shahravi, Z. (2025). Electro-spun piezoelectric PLLA smart composites as a scaffold on bone fracture: A review. Regenerative Therapy, 28, 591–605. https://doi.org/10.1016/j.reth.2025.01.026

Niknam, Z., Fathi Azarbayjani, A., Rafiaei, S. M., Rasmi, Y., & Tayebi, L. (2024). Polycaprolactone/graphene oxide/magnesium oxide as a novel composite scaffold for bone tissue engineering: Preparation and physical/biological assessment. Journal of Drug Delivery Science and Technology, 95, 105531. https://doi.org/10.1016/j.jddst.2024.105531

Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452

Tariq, S., Shah, S. A., Hameed, F., Mutahir, Z., Khalid, H., Tufail, A., Akhtar, H., Chaudhry, A. A., & Khan, A. F. (2024). Tissue engineered periosteum: Fabrication of a gelatin basedtrilayer composite scaffold with biomimetic properties for enhanced bone healing. International Journal of Biological Macromolecules, 263, 130371. https://doi.org/10.1016/j.ijbiomac.2024.130371

Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406

Wang, B., Liu, J., Guo, C., Bao, X., Qi, L., Yin, J., Xu, G., & Yan, S. (2024). Biomimetic dually cross-linked injectable poly(l-glutamic acid) based nanofiber composite hydrogels with self-healing, osteogenic and angiogenic properties for bone regeneration. Composites Part B: Engineering, 280, 111492. https://doi.org/10.1016/j.compositesb.2024.111492

Wang, C., Wang, B., Ji, X., Tang, X., Li, Y., Huang, Y., & Ma, X. (2025). Plant xylem-inspired chitosan-gelatin scaffolds reinforced with graphene oxide with a superior mechanical strength and hydrophilicity for bone tissue engineering. International Journal of Biological Macromolecules, 319, 145488. https://doi.org/10.1016/j.ijbiomac.2025.145488

Wang, L., Chen, X., Shi, S., Yang, X., Chen, H., & Xiao, J. (2025). Advanced collagen-based scaffolds for cartilage and osteochondral regeneration: A review. International Journal of Biological Macromolecules, 311, 143992. https://doi.org/10.1016/j.ijbiomac.2025.143992

Wang, Q., Fang, X., Feng, A., & Dong, J. (2025). Application of an innovative isoniazid-loaded biomimetic mineralized bone collagen scaffold in bone defect treatment. RSC Advances, 15(35), 28730–28738. https://doi.org/10.1039/d5ra03800f

Wang, X., Yang, X., Xiao, X., Li, X., Chen, C., & Sun, D. (2024). Biomimetic design of platelet-rich plasma controlled release bacterial cellulose/hydroxyapatite composite hydrogel for bone tissue engineering. International Journal of Biological Macromolecules, 269, 132124. https://doi.org/10.1016/j.ijbiomac.2024.132124

Xiong, X., Wang, S., Tan, Y., Wangtueai, S., Hong, H., & Luo, Y. (2025). Aquatic collagen for tissue repair: Process–structure–function design from sustainable sourcing to clinical translation. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2025.12.003

Xun, X., Li, Y., Ni, M., Xu, Y., Li, J., Zhang, D., Chen, G., Ao, H., Luo, H., Wan, Y., & Yu, T. (2024). Calcium crosslinked macroporous bacterial cellulose scaffolds with enhanced in situ mineralization and osteoinductivity for cranial bone regeneration. Composites Part B: Engineering, 275, 111277. https://doi.org/10.1016/j.compositesb.2024.111277

Zaszczy?ska, A., Gradys, A., Ko?buk, D., Zabielski, K., Szewczyk, P. K., Stachewicz, U., & Sajkiewicz, P. (2025). Poly(L-lactide)/nano-hydroxyapatite piezoelectric scaffolds for tissue engineering. Micron, 188, 103743. https://doi.org/10.1016/j.micron.2024.103743

Zhang, C., Zhang, Y., Zhu, M., Zhang, C., Lu, D., Jiang, J., Wang, Z., Deng, P., Qian, Y., Shen, M., & Chen, Q. (2025). Amyloid-induced mineralization: From biological systems to biomimetic materials. Bioactive Materials, 51, 469–493. https://doi.org/10.1016/j.bioactmat.2025.04.036

Authors

Murat Arslan
muratarslan@gmail.com (Primary Contact)
Aylin Erdo?an
Baran Akbulut
Murat Arslan, Erdo?an, A. ., & Akbulut, B. . (2025). BIOMIMETIC MINERALIZATION OF HYDROXYAPATITE ON A COLLAGEN-NANOFIBER COMPOSITE SCAFFOLD FOR BONE TISSUE ENGINEERING APPLICATIONS. Journal of Biomedical and Techno Nanomaterials, 2(5), 303–315. https://doi.org/10.70177/jbtn.v2i5.2977

Article Details