QUANTUM DOTS AS NEAR-INFRARED FLUORESCENT PROBES FOR REAL-TIME IN VIVO BIOIMAGING OF CANCER CELL METASTASIS

Oumar Traore (1), Binta Konate (2), Fatiata Diarra (3)
(1) University of Ouagadougou, Burkina Faso,
(2) Joseph Ki-Zerbo University, Burkina Faso,
(3) University of the Sahel, Burkina Faso

Abstract

Cancer metastasis is the primary cause of cancer-related mortality, yet its dynamic progression in living systems remains difficult to visualize due to limitations of existing imaging probes. Conventional fluorescent dyes used for in vivo bioimaging often suffer from poor photostability, limited brightness, and insufficient tissue penetration, restricting their ability to capture metastatic events in real time. This study aims to develop and evaluate near-infrared-emitting quantum dots as fluorescent probes for real-time in vivo bioimaging of cancer cell metastasis. An experimental nanobiotechnology approach was employed, involving the synthesis of near-infrared quantum dots, surface functionalization to enhance biocompatibility, physicochemical and optical characterization, and biological evaluation using metastatic cancer cell lines and small animal models. Optical analysis demonstrated high quantum yield, narrow emission bandwidth, and excellent photostability within the near-infrared window. In vitro assays confirmed high cell-labeling efficiency with minimal cytotoxicity, while in vivo imaging revealed sustained and high-contrast fluorescence signals that enabled continuous tracking of cancer cell migration and organ colonization. Ex vivo validation corroborated in vivo imaging findings. These results indicate that near-infrared quantum dots provide superior performance compared to conventional fluorescent probes for dynamic metastasis imaging. In conclusion, quantum dot–based near-infrared probes represent a powerful and versatile platform for real-time in vivo visualization of cancer metastasis, offering significant potential for advancing cancer research and diagnostic imaging.


 

Full text article

Generated from XML file

References

Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (n.d.). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Biomedical and Techno Nanomaterials, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453

Arumugasamy, S. K., Chellasamy, G., Murugan, N., Govindaraju, S., Yun, K., & Choi, M.-J. (2024). Synthesis and surface engineering of Ag chalcogenide quantum dots for near-infrared biophotonic applications. Advances in Colloid and Interface Science, 331, 103245. https://doi.org/10.1016/j.cis.2024.103245

Aslam, F., Guo, J., Khalid, A., Anwar, S., Arshad, K., Khan, M. N., Lai, P., & Liu, L. (2025). Carbon dots as probes in FLIM:a review of applications and advances in cellular imaging. RSC Advances, 15(52), 44919–44960. https://doi.org/10.1039/d5ra05371d

Atchudan, R., Karuppasamy, B. D., Perumal, S., Gangadaran, P., Sundramoorthy, A. K., Manoj, D., Rajendran, R. L., Ahn, B.-C., Ahamed, M., Lee, S. W., & Lee, Y. R. (2025). Sustainable-biomass-derived multifunctional carbon dots as fluorescent probes for multi-purpose advanced imaging, migration and security solutions. Surfaces and Interfaces, 62, 106238. https://doi.org/10.1016/j.surfin.2025.106238

Bai, Q., Yang, Q., Liu, Y., Li, A., Yin, X.-B., & Wu, S. (2026). Advanced second near-infrared fluorophores for bioapplications. Coordination Chemistry Reviews, 547, 217146. https://doi.org/10.1016/j.ccr.2025.217146

Bodele, V. G., Lade, Swati. N., Undirwade, Diksha. S., Umekar, M. J., Burle, S. S., Hanmante, P. S., & Lohiya, R. T. (2025). Transforming oncology with carbon quantum dots: Synthesis, properties, and therapeutic potential. Next Nanotechnology, 7, 100181. https://doi.org/10.1016/j.nxnano.2025.100181

Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442

Huang, S., & Huang, G. (2024). The utilization of quantum dot labeling as a burgeoning technique in the field of biological imaging. RSC Advances, 14(29), 20884–20897. https://doi.org/10.1039/d4ra04402a

Kamyab, H., Khalili, E., Yuzir, A., Taheri, M. M., Zambrano, A. K., & Rajendran, S. (2025). Emerging nanoparticle-based strategies for advanced cancer imaging and diagnosis. International Journal of Pharmaceutics, 683, 126046. https://doi.org/10.1016/j.ijpharm.2025.126046

Liang, A., Yang, J., Zhu, X., & Zhou, X. (2025). The glowing frontier: Carbon dots’ journey for customized cancer treatments. Journal of Drug Delivery Science and Technology, 105, 106658. https://doi.org/10.1016/j.jddst.2025.106658

Liu, Y., Wang, N., Qin, D., Chen, X., Yang, H., & Hua, F. (2025). The application of quantum dots in dental and oral medicine: A scoping review. Journal of Dentistry, 153, 105536. https://doi.org/10.1016/j.jdent.2024.105536

Mohammadi, T., Gheybalizadeh, H., Rahimpour, E., Soleymani, J., & Shafiei-Irannejad, V. (2025). Advanced photoluminescent nanomaterials for targeted bioimaging of cancer cells. Heliyon, 11(1), e41566. https://doi.org/10.1016/j.heliyon.2024.e41566

Murugan, P., Yang, F., Praburaman, L., Singaravel, V., Moovendhan, M., Manikandan, C., & Liu, S.-Y. (2025). Cervical cancer imaging with organic small molecule NIR fluorophores: Design strategies and biomedical applications. Chinese Journal of Structural Chemistry, 100813. https://doi.org/10.1016/j.cjsc.2025.100813

Murugan, S., Ravichandran, S., Meena, R. K., Meena, R., & Kushwaha, O. S. (2026). Chapter 21—Emerging trends in phytotherapy of cancer: Utilizing carbon dots derived from ayurvedic medicinal plants to treat cancer. In M. Rai & S. Bhattarai (Eds.), Emerging Trends in Phytotherapy of Cancer (pp. 357–376). Academic Press. https://doi.org/10.1016/B978-0-443-40511-2.00014-0

Nandi, S. K., Das, M., Kundu, S., Sahoo, P., & Ghosh, C. K. (2025). Chapter 12—Quantum dot nanocarriers for drug delivery in triple-negative breast cancer. In P. Kesharwani & S. Singh (Eds.), Quantum Dot Nanocarriers for Drug Delivery (pp. 313–362). Academic Press. https://doi.org/10.1016/B978-0-443-24064-5.00017-2

Paliwal, H., Kasture, A., Khedkar, P., Rangbhal, T., & Prajapati, B. G. (2026). Chapter 8—Application of quantum dots for the diagnosis and treatment of eye melanoma. In B. G. Prajapati, D. U. Kapoor, & N. Ali (Eds.), Eye Melanoma Unveiled (pp. 147–172). Academic Press. https://doi.org/10.1016/B978-0-443-27541-8.00014-6

Pashootan, P., González-Valdivieso, J., Moosavi, M. A., Fernández-Lucas, J., Cordani, M., Zarepour, A., Khosravi, A., Fangano, G., Petralia, S., Iravani, S., & Zarrabi, A. (2025). Biomedical advances and clinical challenges of graphitic carbon nitride quantum dots: A comprehensive review. Inorganic Chemistry Communications, 182, 115637. https://doi.org/10.1016/j.inoche.2025.115637

Patil, J., & Bhattacharya, S. (2024). Exploring the potential of quantum dots and plasmonic nanoparticles for imaging and phototherapy in colorectal neoplasia. Results in Chemistry, 10, 101689. https://doi.org/10.1016/j.rechem.2024.101689

Pooresmaeil, M., & Mohammadi, R. (2025). Chapter 4—Quantum dots for enhanced anticancer drug delivery. In P. Kesharwani & S. Singh (Eds.), Quantum Dot Nanocarriers for Drug Delivery (pp. 85–128). Academic Press. https://doi.org/10.1016/B978-0-443-24064-5.00013-5

Pratap, S. (2026). A review on development in synthesis process, characteristics, and biological applications of transition metal dichalcogenides quantum dots. Tissue and Cell, 98, 103156. https://doi.org/10.1016/j.tice.2025.103156

Rasal, A. S., Subrahmanya, T. M., Kizhepat, S., Getachew, G., Ghule, A. V., Devan, R. S., Hung, W.-S., Fahmi, M. Z., Wibrianto, A., & Chang, J.-Y. (2025). Carbon quantum dots: Classification-structure-property-application relationship for biomedical and environment remediation. Coordination Chemistry Reviews, 533, 216510. https://doi.org/10.1016/j.ccr.2025.216510

Rathod, D., Jadeja, P., Patel, R., & Prajapati, B. G. (2026). Chapter 9—Targeted therapy of quantum dots against prostate cancer. In B. G. Prajapati, D. U. Kapoor, N. Ali, & A. Krishnan (Eds.), Nanocarriers in Prostate Cancer (pp. 213–238). Academic Press. https://doi.org/10.1016/B978-0-443-33208-1.00007-X

Soman, S., Kulkarni, S., Sherin, F., Roy, A. A., Mukharya, A., Pokale, R., & Mutalik, S. (2025). Bioinspired quantum dots: Advancing diagnostic and therapeutic strategies in breast cancer. RSC Advances, 15(34), 27738–27771. https://doi.org/10.1039/d5ra03443d

Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406

Vadakkan, K., & Karippali, S. (2026). Carbon-based quantum dots in oncology: Properties and applications in cancer therapy and diagnosis. Next Nanotechnology, 9, 100328. https://doi.org/10.1016/j.nxnano.2025.100328

Wang, H., Yang, S., Chen, L., Li, Y., He, P., Wang, G., Dong, H., Ma, P., & Ding, G. (2024). Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioactive Materials, 33, 174–222. https://doi.org/10.1016/j.bioactmat.2023.10.004

Wang, J., Gao, X., Feng, L., Zhang, D., Lv, S., Li, X., Liu, Q., Yu, D., Xing, M., Li, D., Suo, L., Mou, H., & Song, J. (2025). Advances in near-infrared responsive functional nanocomposites for bioimaging and antitumor research. Journal of Controlled Release, 384, 113904. https://doi.org/10.1016/j.jconrel.2025.113904

Woo, S., Han, S., Kim, H., & Lee, S.-G. (2026). Chapter 9—Biomedical applications of carbon dots for inflammation and cancer. In J. W. Rhim (Ed.), Carbon Dots in Food Packaging and Preservation (pp. 165–188). Elsevier. https://doi.org/10.1016/B978-0-443-43940-7.00011-8

Xu, L., Zhang, Q., Wang, X., & Lin, W. (2024). Biomedical applications of NIR-II organic small molecule fluorescent probes in different organs. Coordination Chemistry Reviews, 519, 216122. https://doi.org/10.1016/j.ccr.2024.216122

Zhao, X., Ma, Y., & Lei, Z. (2024). Advanced optical imaging technology in the near infrared window for cell tracking in vivo. Coordination Chemistry Reviews, 521, 216178. https://doi.org/10.1016/j.ccr.2024.216178

Zou, M., Wang, Y., Jiao, J., Lv, M., & Mo, T. (2026). Advances in the near-infrared ? for in vivo fluorescence imaging applications: A review. Talanta, 297, 128630. https://doi.org/10.1016/j.talanta.2025.128630

Authors

Oumar Traore
oumartraore@gmail.com (Primary Contact)
Binta Konate
Fatiata Diarra
Traore, O., Konate, B. ., & Diarra, F. . (2025). QUANTUM DOTS AS NEAR-INFRARED FLUORESCENT PROBES FOR REAL-TIME IN VIVO BIOIMAGING OF CANCER CELL METASTASIS. Journal of Biomedical and Techno Nanomaterials, 2(5), 316–328. https://doi.org/10.70177/jbtn.v2i5.2978

Article Details