DEVELOPMENT OF A BIO-MEMS CANTILEVER-BASED BIOSENSOR FOR THE RAPID, LABEL-FREE DETECTION OF THE AVIAN INFLUENZA VIRUS
Abstract
Avian influenza virus remains a significant threat to global public health, poultry industries, and food security due to its high transmissibility and zoonotic potential. Rapid and reliable detection is essential for early outbreak control, yet conventional diagnostic methods are often time-consuming, laboratory-dependent, and rely on labeled reagents, limiting their applicability in field and point-of-care settings. This study aims to develop a Bio-MEMS cantilever-based biosensor capable of rapid, label-free detection of the avian influenza virus with high sensitivity and specificity. An experimental Bio-MEMS approach was employed, involving microfabrication of silicon cantilevers, surface biofunctionalization with virus-specific recognition elements, and real-time mechanical sensing of virus–receptor interactions. The biosensor’s performance was evaluated by measuring cantilever deflection responses under controlled exposure to varying viral concentrations. The results demonstrate stable baseline behavior, low noise levels, and clear concentration-dependent deflection signals, achieving rapid detection within minutes and a low limit of detection without signal amplification. Non-target analytes produced negligible responses, confirming high specificity. In conclusion, the developed Bio-MEMS cantilever-based biosensor provides an effective platform for rapid, label-free detection of avian influenza virus. This technology shows strong potential for integration into portable diagnostic systems and could be adapted for surveillance of other viral pathogens.
Full text article
References
Adem, H., & Berkessa, M. (2022). A case study of EFL teachers’ practice of teaching speaking skills vis-à-vis the principles of Communicative Language Teaching (CLT). Cogent Education, 9(1), 2087458. https://doi.org/10.1080/2331186X.2022.2087458
Aljaloud, A. S., Uliyan, D. M., Alkhalil, A., Elrhman, M. A., Alogali, A. F. M., Altameemi, Y. M., Altamimi, M., & Kwan, P. (2022). A Deep Learning Model to Predict Student Learning Outcomes in LMS Using CNN and LSTM. IEEE Access, 10, 85255–85265. https://doi.org/10.1109/ACCESS.2022.3196784
Amirkhan, J. H. (1990). A factor analytically derived measure of coping: The Coping Strategy Indicator. Journal of Personality and Social Psychology, 59(5), 1066–1074. https://doi.org/10.1037/0022-3514.59.5.1066
Ariatna, & Ellis, R. (2021). A case study of one teacher’s introduction to task-based language teaching: Insights for the development of a professional development programme. Language Teaching for Young Learners, 3(1), 137–158. https://doi.org/10.1075/ltyl.00020.ell
Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404
Asif, M., Algethami, J. S., Alhamami, M. A. M., Lie, P., Shaomin, S., & Aziz, A. (2025). Redefining nanobiosensors in rapid detection of viral infections: Where are we now? Trends in Environmental Analytical Chemistry, 46, e00263. https://doi.org/10.1016/j.teac.2025.e00263
Barkley, A. S., Spece, L. J., Barros, L. M., Bonow, R. H., Ravanpay, A., Ellenbogen, R., Huoy, P., Thy, T., Sothea, S., Pak, S., LoGerfo, J., & Lele, A. V. (2021). A mixed-methods needs assessment of traumatic brain injury care in a low- and middle-income country setting: Building neurocritical care capacity at two major hospitals in Cambodia. Journal of Neurosurgery, 134(1), 244–250. https://doi.org/10.3171/2019.10.JNS192118
Dowarah, S., Kalita, P., & Kumar, S. (2024). Progress in mechanical energy harvesting via piezoelectric polymers and biomaterials. Polymer, 312, 127640. https://doi.org/10.1016/j.polymer.2024.127640
Dugnol-Menéndez, J., Jiménez-Arberas, E., Ruiz-Fernández, M. L., Fernández-Valera, D., Mok, A., & Merayo-Lloves, J. (2021). A collaborative escape room as gamification strategy to increase learning motivation and develop curricular skills of occupational therapy students. BMC Medical Education, 21(1), 544. https://doi.org/10.1186/s12909-021-02973-5
Edwards, D. J., McEnteggart, C., & Barnes-Holmes, Y. (2022). A Functional Contextual Account of Background Knowledge in Categorization: Implications for Artificial General Intelligence and Cognitive Accounts of General Knowledge. Frontiers in Psychology, 13, 745306. https://doi.org/10.3389/fpsyg.2022.745306
Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442
Hemdan, M., Abuelhaded, K., Shaker, A. A. S., Ashour, M. M., Abdelaziz, M. M., Dahab, M. I., Nassar, Y. A., Sarguos, A. M. M., Zakaria, P. S., Fahmy, H. A., Abdel Mageed, S. S., Hamed, M. O. A., Mubarak, M. F., Taher, M. A., Gumaah, N. F., & Ragab, A. H. (2025). Recent advances in nano-enhanced biosensors: Innovations in design, applications in healthcare, environmental monitoring, and food safety, and emerging research challenges. Sensing and Bio-Sensing Research, 48, 100783. https://doi.org/10.1016/j.sbsr.2025.100783
Labrague, L. J., McEnroe-Petitte, D. M., Gloe, D., Thomas, L., Papathanasiou, I. V., & Tsaras, K. (2017). A literature review on stress and coping strategies in nursing students. Journal of Mental Health, 26(5), 471–480. https://doi.org/10.1080/09638237.2016.1244721
Lin, Y., & Yu, Z. (2023). A meta?analysis of the effects of augmented reality technologies in interactive learning environments (2012–2022). Computer Applications in Engineering Education, 31(4), 1111–1131. https://doi.org/10.1002/cae.22628
Lv, M., Huang, C., Chen, T., & Wang, T. (2020). A Collaborative Deep and Shallow Semisupervised Learning Framework for Mobile App Classification. Mobile Information Systems, 2020, 1–12. https://doi.org/10.1155/2020/4521723
Mamekova, A. T., Toxanbayeva, N. K., Naubaeva, K. T., Ongarbayeva, S. S., & Akhmediyeva, K. N. (2021). A Meta-Analysis on the Impact of Gamification over Students’ Motivation. Journal of Intellectual Disability - Diagnosis and Treatment, 9(4), 417–422. https://doi.org/10.6000/2292-2598.2021.09.04.9
Marukami, T., Tani, S., Matsuda, A., Takemoto, K., Shindo, A., & Inada, H. (2012). A Basic Study on Application of Voice Recognition Input to an Electronic Nursing Record System -Evaluation of the Function as an Input Interface-. Journal of Medical Systems, 36(3), 1053–1058. https://doi.org/10.1007/s10916-010-9567-z
Mustafiyanti, M., Putri, M. P., Muyassaroh, M., Noviani, D., & Dylan, M. (2023). A Form of Independent Curriculum, an Overview of Independent Learning at State Elementary School 05 Gelumbang Muaraenim. Pengabdian: Jurnal Abdimas, 1(2), 82–96. https://doi.org/10.55849/abdimas.v1i2.185
Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452
Philip, A., & Kumar, A. R. (2024). Two-dimensional materials and their role in sensitivity enhancement of surface plasmon resonance based biosensor. TrAC Trends in Analytical Chemistry, 171, 117497. https://doi.org/10.1016/j.trac.2023.117497
Pollard, A. (1982). A Model of Classroom Coping Strategies. British Journal of Sociology of Education, 3(1), 19–37. https://doi.org/10.1080/0142569820030102
Samaha, F. F., Iqbal, N., Seshadri, P., Chicano, K. L., Daily, D. A., McGrory, J., Williams, T., Williams, M., Gracely, E. J., & Stern, L. (2003). A Low-Carbohydrate as Compared with a Low-Fat Diet in Severe Obesity. New England Journal of Medicine, 348(21), 2074–2081. https://doi.org/10.1056/NEJMoa022637
Sharma, B., Kumar, M., & Sharma, A. (2024). Recent advances in micro- and bio- electromechanical system architectures for energy efficient chemiresistors. Microelectronic Engineering, 288, 112168. https://doi.org/10.1016/j.mee.2024.112168
Siavashy, S., Soltani, M., Rahimi, S., Hosseinali, M., Guilandokht, Z., & Raahemifar, K. (2024). Recent advancements in microfluidic-based biosensors for detection of genes and proteins: Applications and techniques. Biosensors and Bioelectronics: X, 19, 100489. https://doi.org/10.1016/j.biosx.2024.100489
Stevenson, N. A., VanLone, J., & Barber, B. R. (2020). A Commentary on the Misalignment of Teacher Education and the Need for Classroom Behavior Management Skills. Education and Treatment of Children, 43(4), 393–404. https://doi.org/10.1007/s43494-020-00031-1
Sulaiman, N., Rishmawy, Y., Hussein, A., Saber-Ayad, M., Alzubaidi, H., Al Kawas, S., Hasan, H., & Guraya, S. Y. (2021). A mixed methods approach to determine the climate of interprofessional education among medical and health sciences students. BMC Medical Education, 21(1), 203. https://doi.org/10.1186/s12909-021-02645-4
Swedo, S. E., Allen, A. J., Glod, C. A., Clark, C. H., Teicher, M. H., Richter, D., Hoffman, C., Hamburger, S. D., Dow, S., Brown, C., & Rosenthal, N. E. (1997). A Controlled Trial of Light Therapy for the Treatment of Pediatric Seasonal Affective Disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 36(6), 816–821. https://doi.org/10.1097/00004583-199706000-00019
Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406
Thiyagarajan, K., Rahul, S. G., Adarsh, T., Arya, P. U., Babu, T. A., Rajini, G. K., & Maji, D. (2025). Screen-printed flexible electronic devices: A review. Sensors and Actuators A: Physical, 396, 117131. https://doi.org/10.1016/j.sna.2025.117131
Williams, A. E. (2020). A Model for Artificial General Intelligence. In B. Goertzel, A. I. Panov, A. Potapov, & R. Yampolskiy (Eds.), Artificial General Intelligence (Vol. 12177, pp. 357–369). Springer International Publishing. https://doi.org/10.1007/978-3-030-52152-3_38
Xue, S. (2022). A conceptual model for integrating affordances of mobile technologies into task-based language teaching. Interactive Learning Environments, 30(6), 1131–1144. https://doi.org/10.1080/10494820.2019.1711132
Yang, W., Feng, W., Hou, S., Hao, Z., Huang, C., & Pan, Y. (2024). The development of GFETs for biometric applications. Sensors and Diagnostics, 4(2), 111–135. https://doi.org/10.1039/d4sd00317a
Authors
Copyright (c) 2025 Thiago Rocha, Clara Mendes, Rafaela Lima

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.