SURFACE-ENHANCED RAMAN SPECTROSCOPY (SERS) USING SILVER NANOSTARS FOR THE MULTIPLEXED DETECTION OF DISEASE BIOMARKERS IN SERUM

Nadine Tchuente (1), Michel Ngassa (2), Elvis Ewane (3)
(1) University of Buea, Cameroon,
(2) University of Douala, Cameroon,
(3) University of Bamenda, Cameroon

Abstract

Early and accurate detection of disease biomarkers in serum is essential for clinical diagnosis, prognosis, and precision medicine, yet conventional immunoassays often rely on labeled reagents, multiple processing steps, and limited multiplexing capability. Surface-Enhanced Raman Spectroscopy (SERS) offers label-free molecular specificity, but its clinical application has been constrained by reproducibility and sensitivity challenges in complex biological matrices. This study aims to develop a silver nanostar–based SERS platform for the multiplexed detection of disease biomarkers directly in serum. An experimental nanobiosensing approach was employed, involving the synthesis of shape-controlled silver nanostars, surface functionalization with biomolecular recognition elements, physicochemical characterization, and SERS-based analytical evaluation in serum samples. The results demonstrate that silver nanostars generate strong and stable Raman enhancement, enabling clear discrimination of multiple biomarker signatures at low nanomolar concentrations. High linearity, acceptable reproducibility, and minimal matrix interference were achieved under multiplexed conditions. Comparative analysis confirmed superior performance of nanostars relative to conventional spherical nanoparticles. In conclusion, silver nanostar–based SERS provides a robust, label-free, and highly sensitive platform for multiplexed serum biomarker detection. This approach holds significant potential for advancing clinical diagnostics and translational bioanalytical applications.


 

Full text article

Generated from XML file

References

Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404

Bari, R. Z. A., Usman, M., Huda, N. ul, Javed, M. A., Tamulevi?ius, S., & Zhang, X. (2026). Advanced artificial intelligence combined with SERS platforms for diagnosis and therapeutic effects of cancer in clinical applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 348, 127053. https://doi.org/10.1016/j.saa.2025.127053

Bruce, B. B., Gao, S., Boateng, I. D., Amu-Darko, J., & Zhang, D. (2025). Gold nanostars-powered SERS detection: Unveiling the hidden threats in food safety. Journal of Food Composition and Analysis, 148, 108517. https://doi.org/10.1016/j.jfca.2025.108517

Chen, B., Gao, J., Sun, H., Chen, Z., & Qiu, X. (2025a). Innovative applications of SERS in precision medicine: In situ and real-time live imaging. Talanta, 294, 128225. https://doi.org/10.1016/j.talanta.2025.128225

Chen, B., Gao, J., Sun, H., Chen, Z., & Qiu, X. (2025b). Surface-enhanced Raman scattering (SERS) technology: Emerging applications in cancer imaging and precision medicine. Methods, 241, 67–93. https://doi.org/10.1016/j.ymeth.2025.05.009

Chen, B., Yao, X., Zhang, S., Hu, X., Gao, J., Sun, H., Chen, Z., Sun, X., Qiu, X., & Li, Y. (2026). Highly sensitive detection of cervical cancer biomarker miR-21 using surface-enhanced Raman scattering (SERS). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 344, 126725. https://doi.org/10.1016/j.saa.2025.126725

Esther Jebakumari, K. A., Murugasenapathi, N. K., Peixoto, L. P. F., Oliveira, G. P., Andrade, G. F. S., Gopinath, S. C. B., & Tamilarasan, P. (2024). Chapter 17—Surface-enhanced Raman scattering in biosensing technologies. In M. Veerapandian, J. Joseph, & M. Marimuthu (Eds.), Health and Environmental Applications of Biosensing Technologies (pp. 355–391). Elsevier. https://doi.org/10.1016/B978-0-443-19039-1.00017-1

Goel, R., Chakraborty, S., Awasthi, V., Bhardwaj, V., & Kumar Dubey, S. (2024). Exploring the various aspects of Surface enhanced Raman spectroscopy (SERS) with focus on the recent progress: SERS-active substrate, SERS-instrumentation, SERS-application. Sensors and Actuators A: Physical, 376, 115555. https://doi.org/10.1016/j.sna.2024.115555

Han, Y., Wen, R., Liu, J., Wei, J., Yin, Q., & Wu, L. (2025). Advances and innovations in surface-enhanced Raman scattering detection of microcystins: Towards sensitive, rapid, and high-throughput analysis. Food Chemistry, 496, 146824. https://doi.org/10.1016/j.foodchem.2025.146824

Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442

Ilhan, H., Panhwar, S., Boyaci, I. H., & Tamer, U. (2026). Chapter 4—SERS (surface-enhanced Raman scattering)-based lateral flow assays. In S. A. Özkan & M. K. Sezgintürk (Eds.), Lateral Flow Assays (pp. 69–90). Academic Press. https://doi.org/10.1016/B978-0-443-23883-3.00003-9

Jabbar, H., Zgair, I. A., Heydaryan, K., Kadhim, S. A., Mehmandoust, S., Eskandari, V., & Sahbafar, H. (2025). Applications of artificial intelligence and machine learning in combination with surface-enhanced Raman spectroscopy (SERS). Chemometrics and Intelligent Laboratory Systems, 263, 105445. https://doi.org/10.1016/j.chemolab.2025.105445

Jampasa, S., Khamcharoen, W., Wirojsaengthong, S., Suea-Ngam, A., Traipop, S., Ozer, T., Unob, F., Puthongkham, P., & Chailapakul, O. (2024). Recent advances and trends in the applications of nanomaterials in optical sensing platforms. TrAC Trends in Analytical Chemistry, 180, 117914. https://doi.org/10.1016/j.trac.2024.117914

Jiang, S., Han, Y., Zhang, Y., & Zhang, C. (2026). Recent advances in label-free detection in vitro and label-free imaging in vivo. Coordination Chemistry Reviews, 549, 217327. https://doi.org/10.1016/j.ccr.2025.217327

Kissell, L. N., Han, D., Vang, D., Cikanek, A. W. R., Steckl, A. J., & Strobbia, P. (2024). Improved point-of-care detection of P. gingivalis using optimized surface-enhanced Raman scattering in lateral flow assays††Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sd00056k. Sensors and Diagnostics, 3(5), 839–849. https://doi.org/10.1039/d4sd00056k

Li, C., Wang, Y., Wu, Y., Yu, Y., Liu, Y., & Liu, Q. (2025). Surface-enhanced Raman scattering for the detection of biomarkers of neurodegenerative diseases: A review. TrAC Trends in Analytical Chemistry, 185, 118173. https://doi.org/10.1016/j.trac.2025.118173

Nanda, B. P., Rani, P., Paul, P., Aman, Ganti, S. S., & Bhatia, R. (2024). Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) in modern analysis. Journal of Pharmaceutical Analysis, 14(11), 100959. https://doi.org/10.1016/j.jpha.2024.02.013

Nguyen, H. A., Nga, D. T. N., Cuong, T. D., Quan Doan, M., & Le, A.-T. (2025). Advances in surface-enhanced Raman scattering applications for precision agriculture: Monitoring plant health and crop quality. RSC Advances, 15(57), 49320–49352. https://doi.org/10.1039/d5ra08452k

Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452

Puravankara, V., Manjeri, A., Ho Kim, Y., Kitahama, Y., Goda, K., Dwivedi, P. K., & George, S. D. (2024). Surface-Enhanced Raman spectroscopy for Point-of-Care Bioanalysis: From lab to field. Chemical Engineering Journal, 498, 155163. https://doi.org/10.1016/j.cej.2024.155163

Renata, S., Verma, N., & Peddinti, R. K. (2025). Surface-enhanced Raman spectroscopy as effective tool for detection of sialic acid as cancer biomarker. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 329, 125631. https://doi.org/10.1016/j.saa.2024.125631

Sharma, N., Singh, A., Ratnesh, R. K., Adhana, A., Tyagi, L., & Singh, J. (2025). Insights of Surface Enhancing Raman Spectroscopy for Biomedical Application. Methods, 243, 16–30. https://doi.org/10.1016/j.ymeth.2025.08.005

Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406

Tran, V. A., Tran, T. T. V., Le, V. T., Doan, V. D., Vo, G. N. L., Tran, V. H., Jeong, H., & Vo, T. T. T. (2024). Advanced nano engineering of surface-enhanced Raman scattering technologies for sensing applications. Applied Materials Today, 38, 102217. https://doi.org/10.1016/j.apmt.2024.102217

Wang, C., Weng, G., Li, J., Zhu, J., & Zhao, J. (2024). A review of SERS coupled microfluidic platforms: From configurations to applications. Analytica Chimica Acta, 1296, 342291. https://doi.org/10.1016/j.aca.2024.342291

Wang, Y., Zhang, S., Yin, Q., Wei, J., Liu, J., & Wu, L. (2025). TMB-Mediated Catalytic SERS systems: Applications, Innovations, and Future Prospects. TrAC Trends in Analytical Chemistry, 118632. https://doi.org/10.1016/j.trac.2025.118632

Wu, Y., Wang, Y., Mo, T., & Liu, Q. (2024). Surface-enhanced Raman scattering-based strategies for tumor markers detection: A review. Talanta, 280, 126717. https://doi.org/10.1016/j.talanta.2024.126717

Zhang, Q., Chai, Y., Li, X., Wang, Z., Zhang, X., Effah, C. Y., Ding, L., & Wu, Y. (2026). Surface-enhanced Raman spectroscopy for protein detection: Challenges and countermeasures. Talanta, 298, 128901. https://doi.org/10.1016/j.talanta.2025.128901

Zhao, R., Li, Y., Li, X., Kim, M., Li, X., Pei, S., Man, S., Peng, W., & Ma, L. (2025). CRISPR/Cas-based SERS detection: A win-win integration towards real-world applications. TrAC Trends in Analytical Chemistry, 191, 118334. https://doi.org/10.1016/j.trac.2025.118334

Zhu, A., Zhao, B., Li, J., Li, X., Shi, Q., Zhang, X., Lu, D., & Yan, D. (2024). Establishment of a Raman microsphere-based immunochromatographic method for the combined detection of influenza A and B viruses and SARS-CoV-2 antigen on a single T-line††Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ra05483k. RSC Advances, 14(50), 37498–37511. https://doi.org/10.1039/d4ra05483k

Authors

Nadine Tchuente
nadinetchuente@gmail.com (Primary Contact)
Michel Ngassa
Elvis Ewane
Tchuente, N., Ngassa, M. ., & Ewane, E. . (2025). SURFACE-ENHANCED RAMAN SPECTROSCOPY (SERS) USING SILVER NANOSTARS FOR THE MULTIPLEXED DETECTION OF DISEASE BIOMARKERS IN SERUM. Journal of Biomedical and Techno Nanomaterials, 2(6), 355–367. https://doi.org/10.70177/jbtn.v2i6.2980

Article Details