SURFACE-ENHANCED RAMAN SPECTROSCOPY (SERS) USING SILVER NANOSTARS FOR THE MULTIPLEXED DETECTION OF DISEASE BIOMARKERS IN SERUM
Abstract
Early and accurate detection of disease biomarkers in serum is essential for clinical diagnosis, prognosis, and precision medicine, yet conventional immunoassays often rely on labeled reagents, multiple processing steps, and limited multiplexing capability. Surface-Enhanced Raman Spectroscopy (SERS) offers label-free molecular specificity, but its clinical application has been constrained by reproducibility and sensitivity challenges in complex biological matrices. This study aims to develop a silver nanostar–based SERS platform for the multiplexed detection of disease biomarkers directly in serum. An experimental nanobiosensing approach was employed, involving the synthesis of shape-controlled silver nanostars, surface functionalization with biomolecular recognition elements, physicochemical characterization, and SERS-based analytical evaluation in serum samples. The results demonstrate that silver nanostars generate strong and stable Raman enhancement, enabling clear discrimination of multiple biomarker signatures at low nanomolar concentrations. High linearity, acceptable reproducibility, and minimal matrix interference were achieved under multiplexed conditions. Comparative analysis confirmed superior performance of nanostars relative to conventional spherical nanoparticles. In conclusion, silver nanostar–based SERS provides a robust, label-free, and highly sensitive platform for multiplexed serum biomarker detection. This approach holds significant potential for advancing clinical diagnostics and translational bioanalytical applications.
Full text article
References
Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404
Bari, R. Z. A., Usman, M., Huda, N. ul, Javed, M. A., Tamulevi?ius, S., & Zhang, X. (2026). Advanced artificial intelligence combined with SERS platforms for diagnosis and therapeutic effects of cancer in clinical applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 348, 127053. https://doi.org/10.1016/j.saa.2025.127053
Bruce, B. B., Gao, S., Boateng, I. D., Amu-Darko, J., & Zhang, D. (2025). Gold nanostars-powered SERS detection: Unveiling the hidden threats in food safety. Journal of Food Composition and Analysis, 148, 108517. https://doi.org/10.1016/j.jfca.2025.108517
Chen, B., Gao, J., Sun, H., Chen, Z., & Qiu, X. (2025a). Innovative applications of SERS in precision medicine: In situ and real-time live imaging. Talanta, 294, 128225. https://doi.org/10.1016/j.talanta.2025.128225
Chen, B., Gao, J., Sun, H., Chen, Z., & Qiu, X. (2025b). Surface-enhanced Raman scattering (SERS) technology: Emerging applications in cancer imaging and precision medicine. Methods, 241, 67–93. https://doi.org/10.1016/j.ymeth.2025.05.009
Chen, B., Yao, X., Zhang, S., Hu, X., Gao, J., Sun, H., Chen, Z., Sun, X., Qiu, X., & Li, Y. (2026). Highly sensitive detection of cervical cancer biomarker miR-21 using surface-enhanced Raman scattering (SERS). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 344, 126725. https://doi.org/10.1016/j.saa.2025.126725
Esther Jebakumari, K. A., Murugasenapathi, N. K., Peixoto, L. P. F., Oliveira, G. P., Andrade, G. F. S., Gopinath, S. C. B., & Tamilarasan, P. (2024). Chapter 17—Surface-enhanced Raman scattering in biosensing technologies. In M. Veerapandian, J. Joseph, & M. Marimuthu (Eds.), Health and Environmental Applications of Biosensing Technologies (pp. 355–391). Elsevier. https://doi.org/10.1016/B978-0-443-19039-1.00017-1
Goel, R., Chakraborty, S., Awasthi, V., Bhardwaj, V., & Kumar Dubey, S. (2024). Exploring the various aspects of Surface enhanced Raman spectroscopy (SERS) with focus on the recent progress: SERS-active substrate, SERS-instrumentation, SERS-application. Sensors and Actuators A: Physical, 376, 115555. https://doi.org/10.1016/j.sna.2024.115555
Han, Y., Wen, R., Liu, J., Wei, J., Yin, Q., & Wu, L. (2025). Advances and innovations in surface-enhanced Raman scattering detection of microcystins: Towards sensitive, rapid, and high-throughput analysis. Food Chemistry, 496, 146824. https://doi.org/10.1016/j.foodchem.2025.146824
Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442
Ilhan, H., Panhwar, S., Boyaci, I. H., & Tamer, U. (2026). Chapter 4—SERS (surface-enhanced Raman scattering)-based lateral flow assays. In S. A. Özkan & M. K. Sezgintürk (Eds.), Lateral Flow Assays (pp. 69–90). Academic Press. https://doi.org/10.1016/B978-0-443-23883-3.00003-9
Jabbar, H., Zgair, I. A., Heydaryan, K., Kadhim, S. A., Mehmandoust, S., Eskandari, V., & Sahbafar, H. (2025). Applications of artificial intelligence and machine learning in combination with surface-enhanced Raman spectroscopy (SERS). Chemometrics and Intelligent Laboratory Systems, 263, 105445. https://doi.org/10.1016/j.chemolab.2025.105445
Jampasa, S., Khamcharoen, W., Wirojsaengthong, S., Suea-Ngam, A., Traipop, S., Ozer, T., Unob, F., Puthongkham, P., & Chailapakul, O. (2024). Recent advances and trends in the applications of nanomaterials in optical sensing platforms. TrAC Trends in Analytical Chemistry, 180, 117914. https://doi.org/10.1016/j.trac.2024.117914
Jiang, S., Han, Y., Zhang, Y., & Zhang, C. (2026). Recent advances in label-free detection in vitro and label-free imaging in vivo. Coordination Chemistry Reviews, 549, 217327. https://doi.org/10.1016/j.ccr.2025.217327
Kissell, L. N., Han, D., Vang, D., Cikanek, A. W. R., Steckl, A. J., & Strobbia, P. (2024). Improved point-of-care detection of P. gingivalis using optimized surface-enhanced Raman scattering in lateral flow assays††Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sd00056k. Sensors and Diagnostics, 3(5), 839–849. https://doi.org/10.1039/d4sd00056k
Li, C., Wang, Y., Wu, Y., Yu, Y., Liu, Y., & Liu, Q. (2025). Surface-enhanced Raman scattering for the detection of biomarkers of neurodegenerative diseases: A review. TrAC Trends in Analytical Chemistry, 185, 118173. https://doi.org/10.1016/j.trac.2025.118173
Nanda, B. P., Rani, P., Paul, P., Aman, Ganti, S. S., & Bhatia, R. (2024). Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) in modern analysis. Journal of Pharmaceutical Analysis, 14(11), 100959. https://doi.org/10.1016/j.jpha.2024.02.013
Nguyen, H. A., Nga, D. T. N., Cuong, T. D., Quan Doan, M., & Le, A.-T. (2025). Advances in surface-enhanced Raman scattering applications for precision agriculture: Monitoring plant health and crop quality. RSC Advances, 15(57), 49320–49352. https://doi.org/10.1039/d5ra08452k
Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452
Puravankara, V., Manjeri, A., Ho Kim, Y., Kitahama, Y., Goda, K., Dwivedi, P. K., & George, S. D. (2024). Surface-Enhanced Raman spectroscopy for Point-of-Care Bioanalysis: From lab to field. Chemical Engineering Journal, 498, 155163. https://doi.org/10.1016/j.cej.2024.155163
Renata, S., Verma, N., & Peddinti, R. K. (2025). Surface-enhanced Raman spectroscopy as effective tool for detection of sialic acid as cancer biomarker. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 329, 125631. https://doi.org/10.1016/j.saa.2024.125631
Sharma, N., Singh, A., Ratnesh, R. K., Adhana, A., Tyagi, L., & Singh, J. (2025). Insights of Surface Enhancing Raman Spectroscopy for Biomedical Application. Methods, 243, 16–30. https://doi.org/10.1016/j.ymeth.2025.08.005
Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406
Tran, V. A., Tran, T. T. V., Le, V. T., Doan, V. D., Vo, G. N. L., Tran, V. H., Jeong, H., & Vo, T. T. T. (2024). Advanced nano engineering of surface-enhanced Raman scattering technologies for sensing applications. Applied Materials Today, 38, 102217. https://doi.org/10.1016/j.apmt.2024.102217
Wang, C., Weng, G., Li, J., Zhu, J., & Zhao, J. (2024). A review of SERS coupled microfluidic platforms: From configurations to applications. Analytica Chimica Acta, 1296, 342291. https://doi.org/10.1016/j.aca.2024.342291
Wang, Y., Zhang, S., Yin, Q., Wei, J., Liu, J., & Wu, L. (2025). TMB-Mediated Catalytic SERS systems: Applications, Innovations, and Future Prospects. TrAC Trends in Analytical Chemistry, 118632. https://doi.org/10.1016/j.trac.2025.118632
Wu, Y., Wang, Y., Mo, T., & Liu, Q. (2024). Surface-enhanced Raman scattering-based strategies for tumor markers detection: A review. Talanta, 280, 126717. https://doi.org/10.1016/j.talanta.2024.126717
Zhang, Q., Chai, Y., Li, X., Wang, Z., Zhang, X., Effah, C. Y., Ding, L., & Wu, Y. (2026). Surface-enhanced Raman spectroscopy for protein detection: Challenges and countermeasures. Talanta, 298, 128901. https://doi.org/10.1016/j.talanta.2025.128901
Zhao, R., Li, Y., Li, X., Kim, M., Li, X., Pei, S., Man, S., Peng, W., & Ma, L. (2025). CRISPR/Cas-based SERS detection: A win-win integration towards real-world applications. TrAC Trends in Analytical Chemistry, 191, 118334. https://doi.org/10.1016/j.trac.2025.118334
Zhu, A., Zhao, B., Li, J., Li, X., Shi, Q., Zhang, X., Lu, D., & Yan, D. (2024). Establishment of a Raman microsphere-based immunochromatographic method for the combined detection of influenza A and B viruses and SARS-CoV-2 antigen on a single T-line††Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ra05483k. RSC Advances, 14(50), 37498–37511. https://doi.org/10.1039/d4ra05483k
Authors
Copyright (c) 2025 Nadine Tchuente, Michel Ngassa, Elvis Ewane

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.