NATURAL LANGUAGE PROCESSING FOR AUTOMATED REQUIREMENT ENGINEERING IN AGILE SOFTWARE DEVELOPMENT
Abstract
Manual Requirement Engineering (RE) in Agile software development creates a significant bottleneck. The reliance on natural language user stories at scale results in high-volume backlogs prone to ambiguity, duplication, and incompleteness, leading to costly, downstream development defects. This research aims to design, develop, and empirically validate a novel, hybrid Natural Language Processing (NLP) framework, termed the Agile Requirement Quality (ARQ) framework, to automate the detection of these common requirement defects. The goal is to reduce cognitive load and improve defect detection velocity during backlog refinement. A mixed-methods Design Science Research (DSR) methodology was employed. We developed the ARQ artifact (a hybrid BERT and heuristic model) and validated it both in-vitro against a 5,000-story “gold standard” annotated corpus (Fleiss’ Kappa 0.86) and in-situ through a quasi-experiment with professional Agile teams. The findings demonstrate high efficacy. In-vitro validation achieved high accuracy (overall 95.2%, with F1-scores of 0.87 for ambiguity and 0.94 for duplication). The in-situ experiment was conclusive: the ARQ-assisted team achieved a 73% increase in defect detection and an 87.5% reduction in “defect leakage” compared to the control team, registering high usability (88.5 SUS). This study provides robust empirical evidence that NLP-driven automation is a viable, high-impact strategy for mitigating risk in Agile RE. The framework functions as a practical “augmented intelligence” tool, significantly reducing defect leakage and improving quality assurance velocity.
Full text article
References
Abbas, J., Ahmad, A., Shaheed, S. M., Fatima, R., Shah, S., Elaffendi, M., & Ali, G. (2024). Classification and Comprehension of Software Requirements Using Ensemble Learning. Computers, Materials and Continua, 80(2), 2839–2855. https://doi.org/10.32604/cmc.2024.052218
Abbasi, M., Nishat, R. I., Bond, C., Graham-Knight, J. B., Lasserre, P., Lucet, Y., & Najjaran, H. (2024). A review of AI and machine learning contribution in business process management (process enhancement and process improvement approaches). Business Process Management Journal, 31(4), 1414–1452. https://doi.org/10.1108/BPMJ-07-2024-0555
Aboukadri, S., Ouaddah, A., & Mezrioui, A. (2024). Machine learning in identity and access management systems: Survey and deep dive. Computers & Security, 139, 103729. https://doi.org/10.1016/j.cose.2024.103729
Al-Obaidy, H., Ebrahim, A., Aljufairi, A., Mero, A., & Eid, O. (2024). Software Engineering for Developing a Cloud Computing Museum-Guide System. International Journal of Cloud Applications and Computing, 14(1). https://doi.org/10.4018/IJCAC.339200
Ananikov, V. P. (2024). Top 20 influential AI-based technologies in chemistry. Artificial Intelligence Chemistry, 2(2), 100075. https://doi.org/10.1016/j.aichem.2024.100075
Anwar, Z., Bibi, N., Rana, T., Kadry, S., & Afzal, H. (2024). Collaborative Solutions to Software Architecture Challenges Faced by IT Professionals. International Journal of Human Capital and Information Technology Professionals, 15(1). https://doi.org/10.4018/IJHCITP.342839
Ben Aoun, R., Hameed, M., Omar, M. B., Rafi-ul-Shan, P. M., Castagnola, E., Karahmet Sher, E., Ahmed, R., & Razmkhah, O. (2026). Chapter 18—Artificial intelligence for regulatory compliance in chemical engineering industries. In F. Sher (Ed.), Artificial Intelligence in Chemical Engineering (pp. 555–592). Elsevier. https://doi.org/10.1016/B978-0-443-34076-5.00015-8
Bhatia, M. & Pallvi. (2026). The integration of emerging technologies in defense: A scientometric overview. Engineering Applications of Artificial Intelligence, 163, 112822. https://doi.org/10.1016/j.engappai.2025.112822
Chang, A. C., & Limon, A. (2024). Chapter 1—Introduction to artificial intelligence for cardiovascular clinicians. In A. C. Chang & A. Limon (Eds.), Intelligence-Based Cardiology and Cardiac Surgery (pp. 3–120). Academic Press. https://doi.org/10.1016/B978-0-323-90534-3.00010-X
Chou, J.-R. (2024). An integrative review exploring the development of sustainable product design in the technological context of Industry 4.0. Advanced Engineering Informatics, 62, 102689. https://doi.org/10.1016/j.aei.2024.102689
Cunningham, J. W., Abraham, W. T., Bhatt, A. S., Dunn, J., Felker, G. M., Jain, S. S., Lindsell, C. J., Mace, M., Martyn, T., Shah, R. U., Tison, G. H., Fakhouri, T., Psotka, M. A., Krumholz, H., Fiuzat, M., O’Connor, C. M., & Solomon, S. D. (2024). Artificial Intelligence in Cardiovascular Clinical Trials. Journal of the American College of Cardiology, 84(20), 2051–2062. https://doi.org/10.1016/j.jacc.2024.08.069
David, I., & Gelbard, R. (2024). Using sentiment analysis to assess PMBOK knowledge areas’ compatibility with agile methodology. CENTERIS – International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies 2023, 239, 381–395. https://doi.org/10.1016/j.procs.2024.06.185
Eramo, R., Tucci, M., Di Pompeo, D., Cortellessa, V., Di Marco, A., & Taibi, D. (2024). Architectural support for software performance in continuous software engineering: A systematic mapping study. Journal of Systems and Software, 207, 111833. https://doi.org/10.1016/j.jss.2023.111833
Fadhel, M. A., Duhaim, A. M., Saihood, A., Sewify, A., Al-Hamadani, M. N. A., Albahri, A. S., Alzubaidi, L., Gupta, A., Mirjalili, S., & Gu, Y. (2024). Comprehensive systematic review of information fusion methods in smart cities and urban environments. Information Fusion, 107, 102317. https://doi.org/10.1016/j.inffus.2024.102317
Fairil, A., & Tobroni, I. (2024). Geographic Information System for Shortest Route Search for Clinics in Pamekasan Regency Using the Djikstra Method. Journal of Computer Science Advancements, 1(6), 268–278. https://doi.org/10.70177/jsca.v1i6.1140
Fonseca i Casas, P., & Pi i Palomes, X. (2026). Building Society 5.0: A foundation for decision-making based on open models and digital twins. Advanced Engineering Informatics, 69, 103970. https://doi.org/10.1016/j.aei.2025.103970
Gao, R. X., Krüger, J., Merklein, M., Möhring, H.-C., & Váncza, J. (2024). Artificial Intelligence in manufacturing: State of the art, perspectives, and future directions. CIRP Annals, 73(2), 723–749. https://doi.org/10.1016/j.cirp.2024.04.101
Hakiri, A., Gokhale, A., Yahia, S. B., & Mellouli, N. (2024). A comprehensive survey on digital twin for future networks and emerging Internet of Things industry. Computer Networks, 244, 110350. https://doi.org/10.1016/j.comnet.2024.110350
Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Journal of Computer Science Advancements, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442
Hughes, L., Davies, F., Li, K., Gunaratnege, S. M., Malik, T., & Dwivedi, Y. K. (2026). Beyond the hype: Organisational adoption of Generative AI through the lens of the TOE framework–A mixed methods perspective. International Journal of Information Management, 86, 102982. https://doi.org/10.1016/j.ijinfomgt.2025.102982
Izzah, N., & Jannah, A. B. (2024). Optimisation of Evacuation Route Determination in an Earthquake Natural Disaster Scenario Using an Excel Solver. Journal of Computer Science Advancements, 1(6), 259–267. https://doi.org/10.70177/jsca.v1i6.1132
Jin, L., Zhai, X., Wang, K., Zhang, K., Wu, D., Nazir, A., Jiang, J., & Liao, W.-H. (2024). Big data, machine learning, and digital twin assisted additive manufacturing: A review. Materials & Design, 244, 113086. https://doi.org/10.1016/j.matdes.2024.113086
Nath, P. C., Mishra, A. K., Sharma, R., Bhunia, B., Mishra, B., Tiwari, A., Nayak, P. K., Sharma, M., Bhuyan, T., Kaushal, S., Mohanta, Y. K., & Sridhar, K. (2024). Recent advances in artificial intelligence towards the sustainable future of agri-food industry. Food Chemistry, 447, 138945. https://doi.org/10.1016/j.foodchem.2024.138945
Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Journal of Computer Science Advancements, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452
Padovano, A., & Cardamone, M. (2024). Towards human-AI collaboration in the competency-based curriculum development process: The case of industrial engineering and management education. Computers and Education: Artificial Intelligence, 7, 100256. https://doi.org/10.1016/j.caeai.2024.100256
Pradhan, M., Hasso, H., Popescu, A., & Müller, C. (2026). Chapter 6—Smart cities: The future with Artificial Intelligence. In M. Pradhan (Ed.), Meeting SDGs in Smart City Infrastructures (pp. 151–189). Elsevier. https://doi.org/10.1016/B978-0-44-326594-5.00015-X
Rahayu, S. S., Tabroni, I., Martin, J., & Fang, W. (2023). Number Rinner Games To Improve 5-6 Year-Old Counting Ability. Journal of Computer Science Advancements, 1(1), 37–47. https://doi.org/10.55849/jsca.v1i1.443
Raza, A., Jingzhao, L., Ghadi, Y., Adnan, M., & Ali, M. (2024). Smart home energy management systems: Research challenges and survey. Alexandria Engineering Journal, 92, 117–170. https://doi.org/10.1016/j.aej.2024.02.033
Shahin, M., Chen, F. F., & Hosseinzadeh, A. (2024). Harnessing customized AI to create voice of customer via GPT3.5. Advanced Engineering Informatics, 61, 102462. https://doi.org/10.1016/j.aei.2024.102462
Siddique, I., Farooq, M., Ullah, Q., Nabi, A., Siddique, M., Siddique, S., Naseer, M., Younis, A., & butt, W. (2026). Chapter 44—Future trends and direction in AI and ML for food science and bioprocess development. In T. Sarkar & A. Haldorai (Eds.), Artificial Intelligence in Food Science (pp. 811–825). Academic Press. https://doi.org/10.1016/B978-0-443-26468-9.00080-1
Tangwaragorn, P., Charoenruk, N., Viriyasitavat, W., Tangmanee, C., Kanawattanachai, P., Hoonsopon, D., Pungpapong, V., Pattanapanyasat, R.-P., Boonpatcharanon, S., & Rhuwadhana, P. (2024). Analyzing key drivers of digital transformation: A review and framework. Journal of Industrial Information Integration, 42, 100680. https://doi.org/10.1016/j.jii.2024.100680
Teresia, V., Jie, L., & Jixiong, C. (2023). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Journal of Computer Science Advancements, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406
Ullah, H., Uzair, M., Jan, Z., & Ullah, M. (2024). Integrating industry 4.0 technologies in defense manufacturing: Challenges, solutions, and potential opportunities. Array, 23, 100358. https://doi.org/10.1016/j.array.2024.100358
Wisdom, D. D., Vincent, O. R., Aborisade, D. O., & Omeike, M. O. (2026). Chapter 11—Defensive walls against sophisticated ML-orchestrated attacks in edge computing. In A. L. Imoize, M. S. Obaidat, & H. H. Song (Eds.), Cybersecurity Defensive Walls in Edge Computing (pp. 275–315). Academic Press. https://doi.org/10.1016/B978-0-443-34109-0.00004-8
Zhao, J., Feng, X., Pang, Q., Fowler, M., Lian, Y., Ouyang, M., & Burke, A. F. (2024). Battery safety: Machine learning-based prognostics. Progress in Energy and Combustion Science, 102, 101142. https://doi.org/10.1016/j.pecs.2023.101142
Authors
Copyright (c) 2025 Muchamad Sobri Sungkar, Serikbek Baibek, Salma Hamdan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.