Implementation of Blockchain Technology to Improve Transparency and Accountability in the Mineral Supply Chain

Kasmira Kasmira (1)
(1) aUniversitas Pejuang Republik Indonesia, Indonesia, Indonesia

Abstract

This study analyzes the potential and challenges of implementing blockchain technology to enhance transparency, accountability, and traceability in mineral supply chains. Using a qualitative approach with case-study methods and thematic analysis of interviews, company reports, regulatory documents, and scientific literature, the study compares initiatives by several industry actors. The findings show that blockchain strengthens end?to?end provenance tracking, authenticity verification, compliance with environmental and ethical standards, and minimizes data manipulation and illicit trade practices. In addition, blockchain integration drives operational efficiency and inter?stakeholder trust through immutable, auditable transaction logs. However, adoption faces structural barriers in the form of regulatory uncertainty, limited digital infrastructure in developing countries, and organizational resistance to system change. This study recommends establishing clear regulatory frameworks, public–private collaboration, cross?platform data standardization, and capacity building including integration with IoT and digital identity to maximize blockchain’s impact on more sustainable and responsible governance of mineral supply chains.

Full text article

Generated from XML file

References

Abdullah, N. N., & Hs Alani, N. H. S. (2025). Blockchain adoption in the supply chain: Enablers, barriers, and opportunities from a systematic review. Sustainable Futures, 10. Scopus. https://doi.org/10.1016/j.sftr.2025.101429

Abid, A., Kallel, S., & Jmäiel, M. (2026). TraSSI: A Confidential Traceability System for Self-sovereign Identity-Based Processes. In S. Kallel, C. Raibulet, I. Bouassida Rodriguez, N. Faci, A. Bennaceur, S. Cheikhrouhou, L. Ben Ayed, M. Sellami, E. Y. Nakagawa, & R. Ben Halima (Eds.), Lect. Notes Comput. Sci.: Vol. 15834 LNCS (pp. 241–246). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-96-7423-7_26

Bang, L. K., Trung, P. H. T., Trong, N. ?. P., & Ngan, K. T. N. (2026). Encryption Strategies for Secure Diamond Quality Management: Blockchain for Diamond Quality Traceability. In K. Ye & L.-J. Zhang (Eds.), Lect. Notes Comput. Sci.: Vol. 16154 LNCS (pp. 16–30). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-032-06307-6_2

Bhuvaneshwari, P., Harold Robinson, Y. H., & Lakshmi, M. B. (2025). BSVA: blockchain-enabled secured vertical aggregation algorithm for transactions management in drug traceability framework. Scientific Reports, 15(1). Scopus. https://doi.org/10.1038/s41598-025-12641-z

Bruzzese, S., Blanc, S., Costa, C., Violino, S., Proto, A. R., & Brun, F. (2025). Consumer awareness and willingness to pay for blockchain-based traceability systems in the forest nursery sector: Lessons learnt in the Italian context. Trees, Forests and People, 22. Scopus. https://doi.org/10.1016/j.tfp.2025.101018

Ebrahimi, M., Chirumalla, K., & Fattouh, A. (2026). Enabling Battery Circularity with Blockchain Technology: An Exploratory Study of Key Benefits. In H. Mizuyama, E. Morinaga, T. Kaihara, T. Nonaka, G. von Cieminski, & D. Romero (Eds.), IFIP Advances in Information and Communication Technology: Vol. 768 IFIPAICT (pp. 402–416). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-032-03546-2_27

Farooq, M. S., Irshad, K., Riaz, D., Abdel Samee, N., Bautista-Thompson, E. B., Aray, D. G., & Ashraf, I. (2025). Client engagement solution for post implementation issues in software industry using blockchain. Scientific Reports, 15(1). Scopus. https://doi.org/10.1038/s41598-025-95448-2

Irwan, M. H. I. M. H., Abdullah, J., Khan, A. S., & Khan, N. A. (2025). Evaluation of SongketChain: A Framework to Protect Unique Cultural Product using Blockchain Technology. Journal of Advanced Research in Applied Sciences and Engineering Technology, 54(1), 38–61. Scopus. https://doi.org/10.37934/araset.54.1.3861

Kandasamy, J., Ethirajan, M., Kumar Agrawal, T. K., & Jagtap, S. (2025). A new blockchain and IoT based architecture of food safety system for confectionery supply chain in Industry 4.0 era. Applied Food Research, 5(2). Scopus. https://doi.org/10.1016/j.afres.2025.101340

Kumar, N., Tyagi, M., & Sachdeva, A. (2025). Exploring the opportunities for transparency enhancement of cold supply chain: An IVPF-SWARA and IVPF-COPRAS based SWOT analysis. Operational Research, 25(4). Scopus. https://doi.org/10.1007/s12351-025-00965-7

Liu, P., Zhou, E., Guo, S., Hong, Z., Chen, W., & Xiao, B. (2026). Regulated Blockchain Enabled Market for Internet of Things. In R. K. Shyamasundar, H. Huang, S. He, J. Fang, & L.-J. Zhang (Eds.), Lect. Notes Comput. Sci.: Vol. 16155 LNCS (pp. 59–73). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-032-06176-8_4

Marcelletti, A., Marangone, E., Kryston, M., & Di Ciccio, C. (2026). Balancing Confidentiality and Transparency for Blockchain-Based Process-Aware Information Systems. In A. Senderovich, C. Cabanillas, I. Vanderfeesten, & H. A. Reijers (Eds.), Lect. Notes Bus. Inf. Process.: Vol. 564 LNBIP (pp. 238–255). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-032-02929-4_14

Patel, A., Sai, S., Daiya, A., Akolekar, H., & Chamola, V. (2025). Blockchain enabled traceability in the jewel supply chain. Scientific Reports, 15(1). Scopus. https://doi.org/10.1038/s41598-025-88245-4

Pavithra, T., Rawat, S., & Sunil, C. K. (2025). Recent trends in blockchain traceability of food products: A review. Food and Humanity, 5. Scopus. https://doi.org/10.1016/j.foohum.2025.100666

Petrillo, A., Rehman, M., & De Felice, F. (2025). Optimizing coffee supply chain transparency and traceability through mobile application. European Journal of Innovation Management, 28(11), 267–300. Scopus. https://doi.org/10.1108/EJIM-01-2025-0088

Pongnumkul, S., Ittipornpaisarn, P., & Pongnumkul, S. (2025). Comparison of blockchain vs. Centralised IT infrastructure costs for food traceability: A Thai broiler supply chain case study. Journal of Innovation and Entrepreneurship, 14(1). Scopus. https://doi.org/10.1186/s13731-025-00465-0

Salehi, A., Babaei, A., & Hamidi, H. (2026). AI-Driven Strategies for Supply Chain Resilience: A Review of Challenges and Solutions During Pandemics. International Journal of Engineering, Transactions B: Applications, 39(3), 585–605. Scopus. https://doi.org/10.5829/ije.2026.39.03c.03

Soe, A. C., Wongsaichia, S., Pienwisetkaew, T., Umeh, C., Yaroson, E. V., & Ketkaew, C. (2025). Blockchain-enabled carbon footprint traceability in Thailand’s organic food sector: A quintuple helix innovation approach. Journal of Open Innovation: Technology, Market, and Complexity, 11(4). Scopus. https://doi.org/10.1016/j.joitmc.2025.100656

Sukumar, P., Pillai, A., Mohite, S., Vanniyar, A., & Pampattiwar, K. (2026). A Comprehensive Study on Leveraging Blockchain and QR Codes for Fake Product Detection. In R. Buyya, S. Gandhi, H. Arolkar, P. Agrawal, & N. Chaubey (Eds.), Commun. Comput. Info. Sci.: Vol. 2619 CCIS (pp. 297–308). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-032-00350-8_22

Vakil, L. M., Ahmad, R. W., Nachouki, M., & Shuja, J. (2025). A decentralized blockchain and IPFS-based framework for secure traceability in agricultural waste-to-energy conversion. Cluster Computing, 28(16). Scopus. https://doi.org/10.1007/s10586-025-05742-x

Ye, K., & Zhang, L.-J. (Eds.). (2026). 9th International Conference on Edge Computing, EDGE 2025, Held as Part of the Services Conference Federation, SCF 2025. Lecture Notes in Computer Science, 16154 LNCS. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-105018579862&partnerID=40&md5=b2d3421ca85d9fd648ea79192fa01da3

Yousef, N., Sata, A., S Shukla, M., Jarboui, S., & Mobarsa, D. (2025). Blockchain-integrated IoT device for advanced inspection of casting defects. Scientific Reports, 15(1). Scopus. https://doi.org/10.1038/s41598-025-86777-3

Zhang, J. Z., Dou, J., Liu, Y. D., Nazrul, A., & Behl, A. (2025). Building resilient circular supply chains with blockchain: Exploring the impact of relationships and capabilities. Technovation, 148. Scopus. https://doi.org/10.1016/j.technovation.2025.103327

Zhou, Z., Wei, K., & Song, T. (2026). A Federated Blockchain-Enabled 6G Streaming Architecture: Protocol Innovation and Trusted Ecology. In R. K. Shyamasundar, H. Huang, S. He, J. Fang, & L.-J. Zhang (Eds.), Lect. Notes Comput. Sci.: Vol. 16155 LNCS (pp. 117–133). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-032-06176-8_8

Ziaya, I., Farou, B., Kouahla, Z., & Seridi, H. (2025). A blockchain and B-tree indexing approach to improve traceability and query efficiency in food supply chain. Cluster Computing, 28(16). Scopus. https://doi.org/10.1007/s10586-025-05631-3

Authors

Kasmira Kasmira
kasmira211c@gmail.com (Primary Contact)
Kasmira, K. (2025). Implementation of Blockchain Technology to Improve Transparency and Accountability in the Mineral Supply Chain. Journal of Tecnologia Quantica, 2(3), 144–152. https://doi.org/10.70177/quantica.v2i5.2537

Article Details