Benchmarking Quantum Annealers vs. Classical Solvers for Complex Optimization Problems in Financial Modeling

Muh. Nur (1), Rina Farah (2), Nina Anis (3)
(1) Sekolah Tinggi Ilmu Ekonomi Enam Kendari, Indonesia,
(2) Universiti Teknologi, Malaysia,
(3) Monash University, Malaysia

Abstract

Quantum annealing has emerged as a promising computational paradigm for solving large-scale combinatorial optimization problems that are traditionally intractable for classical algorithms. The financial modeling sector, characterized by complex portfolio optimization, risk minimization, and option pricing problems, offers a fertile ground for benchmarking the performance of quantum versus classical solvers. This study aims to systematically evaluate the computational efficiency, scalability, and accuracy of quantum annealers specifically the D-Wave Advantage system against leading classical optimization algorithms, including simulated annealing and branch-and-bound methods. A comparative experimental framework was developed to test both solver types on real-world financial datasets encompassing portfolio selection and risk-parity optimization tasks. Quantitative performance metrics such as solution quality, convergence time, and energy landscape exploration were assessed. Results revealed that quantum annealers achieved near-optimal solutions significantly faster for high-dimensional problem instances with non-convex cost functions, whereas classical solvers maintained superior consistency for smaller, well-conditioned models. The findings suggest a complementary paradigm where quantum annealing can accelerate subproblems within hybrid financial optimization pipelines. The study concludes that quantum computing, while not yet universally superior, represents a viable accelerator for specific financial optimization classes under current hardware constraints.


 


 

Full text article

Generated from XML file

References

Ali, M., Ahmed, H., Malik, M. H., & Khalique, A. (2024). Multicommodity information flow through quantum annealer. Quantum Information Processing, 23(9). Scopus. https://doi.org/10.1007/s11128-024-04518-3

Baioletti, M., & Santini, F. (2024). An encoding of argumentation problems using quadratic unconstrained binary optimization. Quantum Machine Intelligence, 6(2). Scopus. https://doi.org/10.1007/s42484-024-00186-9

Bergerault, A., Fortunato, D., & Abreu, R. (2024). Generation of Fixed Margin Binary Matrices Using Quantum Annealing. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 2, pp. 193–198). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.10277

Bucher, D., Porawski, D., Wimmer, B., Nüßlein, J., O’Meara, C., Mohseni, N., Cortiana, G., & Linnhoff-Popien, C. (2025). Evaluating Quantum Optimization for Dynamic Self-Reliant Community Detection. IEEE Transactions on Smart Grid, 16(2), 1339–1350. Scopus. https://doi.org/10.1109/TSG.2024.3483657

Carugno, C., Ferrari Dacrema, M., & Cremonesi, P. (2024). Adaptive Learning for Quantum Linear Regression. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 1, pp. 1595–1599). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.00186

Castro, E. R., Martins, E. O., Sarthour, R. S., Souza, A. M., & Oliveira, I. S. (2024). Improving the convergence of an iterative algorithm for solving arbitrary linear equation systems using classical or quantum binary optimization. Frontiers in Physics, 12. Scopus. https://doi.org/10.3389/fphy.2024.1443977

Chou, Y.-H., Wu, C.-H., Huang, P.-S., Kuo, S.-Y., Jiang, Y.-C., Kuo, S.-Y., & Chang, C.-R. (2024). Hybrid Quantum Annealing with Innovative Trend Ratio Model for Portfolio Optimization. IEEE Congr. Evol. Comput., CEC - Proc. Scopus. https://doi.org/10.1109/CEC60901.2024.10612069

Chou, Y.-H., Wu, C.-H., Huang, P.-S., Shen, J.-Y., Kuo, S.-Y., Kuo, S.-Y., & Chang, C.-R. (2024). Exploring Quantum Annealing for Enhanced International Financial Stock Portfolio Management. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 1, pp. 250–258). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.00038

Codognet, P. (2025). Comparing QUBO models for quantum annealing: Integer encodings for permutation problems. International Transactions in Operational Research, 32(1), 18–37. Scopus. https://doi.org/10.1111/itor.13471

Dziubyna, A. M., ?mierzchalski, T., Gardas, B., Rams, M. M., & Mohseni, M. (2025). Limitations of tensor-network approaches for optimization and sampling: A comparison to quantum and classical Ising machines. Physical Review Applied, 23(5). Scopus. https://doi.org/10.1103/PhysRevApplied.23.054049

Fernandes, G. P. L. M., Fonseca, M. S., Valério, A. G., Carpio, N. A. C., de Assunção, J. M. E. M., Aroca, R. V., Villas-Bôas, C. J., & Thober, D. S. (2025). Invited paper: Enhancing Design Automation with Quantum Algorithms for Chip Design. Proc Des Autom Conf. Scopus. https://doi.org/10.1109/DAC63849.2025.11133257

Ferrari, B., Gnocchi, G., Iori, M., Mascaro, S., Mucciarini, M., Rinaldi, L., Salerno, G., Tartarini, V., & Vezzani, A. (2025). Lookalike Clustering for Customer Segmentation: A Comparative Study of Quantum Annealing and Classical Algorithms. In G. Ochoa (Ed.), GECCO Companion—Proc. Genetic Evolutionary Comput. Conf. Companion (pp. 2433–2440). Association for Computing Machinery, Inc; Scopus. https://doi.org/10.1145/3712255.3734355

Gilbert, V., Rodriguez, J., & Louise, S. (2024). Benchmarking Quantum Annealers with Near-Optimal Minor-Embedded Instances. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 1, pp. 531–537). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.00068

Hosamo, H., Plevris, V., Kraniotis, D., & Rolfsen, C. N. (2025). Can quantum computing surpass classical algorithms in optimizing building performance? A benchmark study with 15,000 simulations. Energy and Buildings, 346. Scopus. https://doi.org/10.1016/j.enbuild.2025.116156

Jallad, T., & Hammad, M. A. (2025). Geometric Hyperplane Intersection Solver: A Matrix-Inversion-Free Framework with Quantum-Neuroevolutionary Enhancements. In K. M. Jaber (Ed.), Proceeding—Int. Conf. Inf. Technol.: Innov. Technol., ICIT (pp. 263–271). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/ICIT64950.2025.11049172

Jiang, J.-R., Shu, Y.-C., & Lin, Q.-Y. (2024). Benchmarks and Recommendations for Quantum, Digital, and GPU Annealers in Combinatorial Optimization. IEEE Access, 12, 125014–125031. Scopus. https://doi.org/10.1109/ACCESS.2024.3455436

Kittichaikoonkij, N., Pongtanyavichai, N., Suwananek, P., Chongstitvatana, P., & Suksen, K. (2025). Benchmarking Quantum Computing for Combinatorial Optimization. Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol., ECTI-CON. Scopus. https://doi.org/10.1109/ECTI-CON64996.2025.11100821

Li, L., Dong, D., & Pan, Y. (2025). Fast numerical solver of Ising optimization problems via pruning and domain selection. Journal of the Franklin Institute, 362(14). Scopus. https://doi.org/10.1016/j.jfranklin.2025.107945

Liu, J., & Moraglio, A. (2025). A Framework for Automatically Setting Multiple Penalty Weights in Quadratic Unconstrained Binary Optimization. In G. Ochoa (Ed.), GECCO Companion—Proc. Genetic Evolutionary Comput. Conf. Companion (pp. 575–578). Association for Computing Machinery, Inc; Scopus. https://doi.org/10.1145/3712255.3726759

Mandal, A. K., Nadim, M., Roy, C. K., Roy, B., & Schneider, K. A. (2024). Evaluating the Performance of a D-Wave Quantum Annealing System for Feature Subset Selection in Software Defect Prediction. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 2, pp. 103–108). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.10261

Mattesi, M., Asproni, L., Mattia, C., Tufano, S., Ranieri, G., Caputo, D., & Corbelletto, D. (2024). Diversifying Investments and Maximizing Sharpe Ratio: A Novel Quadratic Unconstrained Binary Optimization Formulation. Quantum Reports, 6(2), 244–262. Scopus. https://doi.org/10.3390/quantum6020018

Naghmouchi, M. Y., & da Silva Coelho, W. D. S. (2024). Mixed-integer linear programming solver using Benders decomposition assisted by a neutral-atom quantum processor. Physical Review A, 110(1). Scopus. https://doi.org/10.1103/PhysRevA.110.012434

Nenno, D. M., & Caspari, A. (2024). Dynamic optimization on quantum hardware: Feasibility for a process industry use case. Computers and Chemical Engineering, 186. Scopus. https://doi.org/10.1016/j.compchemeng.2024.108704

Nigro, L., Sala, S., Amendola, A., & Prati, E. (2025). Leveraging Quantum Annealing for Layout Optimization. Advanced Quantum Technologies. Scopus. https://doi.org/10.1002/qute.202500358

Osaba, E., & Miranda-Rodriguez, P. (2025). D-Wave’s Nonlinear-Program Hybrid Solver: Description and Performance Analysis. IEEE Access, 13, 4724–4736. Scopus. https://doi.org/10.1109/ACCESS.2025.3525620

Pellini, R., & Ferrari Dacrema, M. (2024). Analyzing the effectiveness of quantum annealing with meta-learning. Quantum Machine Intelligence, 6(2). Scopus. https://doi.org/10.1007/s42484-024-00179-8

Rocutto, L., Maronese, M., Dragoni, D., Cavalli, A., & Cavazzoni, C. (2024). Comparing Adiabatic Quantum Computers for satellite images feature extraction. Future Generation Computer Systems, 159, 105–113. Scopus. https://doi.org/10.1016/j.future.2024.04.027

Sakuler, W., Oberreuter, J. M., Aiolfi, R., Asproni, L., Roman, B., & Schiefer, J. (2025). A real-world test of portfolio optimization with quantum annealing. Quantum Machine Intelligence, 7(1). Scopus. https://doi.org/10.1007/s42484-025-00268-2

Salloum, H., Zhanalin, S., Badr, A. A., & Kholodov, Y. (2025). Mini-scale traffic flow optimization: An iterative QUBOs approach converting from hybrid solver to pure quantum processing unit. Scientific Reports, 15(1). Scopus. https://doi.org/10.1038/s41598-025-04568-2

?mierzchalski, T., Paw?owski, J., Przybysz, A., Pawela, ?., Pucha?a, Z., Koniorczyk, M., Gardas, B., Deffner, S., & Domino, K. (2024). Hybrid quantum-classical computation for automatic guided vehicles scheduling. Scientific Reports, 14(1). Scopus. https://doi.org/10.1038/s41598-024-72101-y

Uotila, V. (2025). Left-deep join order selection with higher-order unconstrained binary optimization on quantum computers. Frontiers in Computer Science, 7. Scopus. https://doi.org/10.3389/fcomp.2025.1649354

Valecha, K., Yeole, A., Salian, A., & Mathur, S. (2024). Empirical Analysis of Classical and Quantum Algorithms for Portfolio Optimization: Enhancing Financial Decision-Making Through Quantum Computing. Int. Conf. Sustain. Commun. Networks Appl., ICSCNA - Proc., 1085–1090. Scopus. https://doi.org/10.1109/ICSCNA63714.2024.10864082

van der Schoot, W., Wezeman, R., Neumann, N., Phillipson, F., & Kooij, R. (2024). Extending the Q-Score to an Application-Level Quantum Metric Framework. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 1, pp. 941–951). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.00113

Venkatesh, S. M., Macaluso, A., Arenas, D., Klusch, M., & Dengel, A. (2025). I-QLS: Quantum-Supported Algorithm for Least Squares Optimization in Non-linear Regression. In M. H. Lees, W. Cai, S. A. Cheong, Y. Su, D. Abramson, J. J. Dongarra, & P. M. A. Sloot (Eds.), Lect. Notes Comput. Sci.: Vol. 15904 LNCS (pp. 19–34). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-97629-2_2

Xu, H., & Pothen, A. (2024). Divide and Conquer-based Quantum Algorithms for Maximum Independent Set on Large Separable Graphs. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 1, pp. 87–97). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.00020

Authors

Muh. Nur
muh.nur363@gmail.com (Primary Contact)
Rina Farah
Nina Anis
Nur, M., Farah, R., & Anis, N. (2025). Benchmarking Quantum Annealers vs. Classical Solvers for Complex Optimization Problems in Financial Modeling. Journal of Tecnologia Quantica, 2(4), 144–158. https://doi.org/10.70177/quantica.v2i4.2601

Article Details