Benchmarking Quantum Annealers vs. Classical Solvers for Complex Optimization Problems in Financial Modeling
Abstract
Quantum annealing has emerged as a promising computational paradigm for solving large-scale combinatorial optimization problems that are traditionally intractable for classical algorithms. The financial modeling sector, characterized by complex portfolio optimization, risk minimization, and option pricing problems, offers a fertile ground for benchmarking the performance of quantum versus classical solvers. This study aims to systematically evaluate the computational efficiency, scalability, and accuracy of quantum annealers specifically the D-Wave Advantage system against leading classical optimization algorithms, including simulated annealing and branch-and-bound methods. A comparative experimental framework was developed to test both solver types on real-world financial datasets encompassing portfolio selection and risk-parity optimization tasks. Quantitative performance metrics such as solution quality, convergence time, and energy landscape exploration were assessed. Results revealed that quantum annealers achieved near-optimal solutions significantly faster for high-dimensional problem instances with non-convex cost functions, whereas classical solvers maintained superior consistency for smaller, well-conditioned models. The findings suggest a complementary paradigm where quantum annealing can accelerate subproblems within hybrid financial optimization pipelines. The study concludes that quantum computing, while not yet universally superior, represents a viable accelerator for specific financial optimization classes under current hardware constraints.
Full text article
References
Ali, M., Ahmed, H., Malik, M. H., & Khalique, A. (2024). Multicommodity information flow through quantum annealer. Quantum Information Processing, 23(9). Scopus. https://doi.org/10.1007/s11128-024-04518-3
Baioletti, M., & Santini, F. (2024). An encoding of argumentation problems using quadratic unconstrained binary optimization. Quantum Machine Intelligence, 6(2). Scopus. https://doi.org/10.1007/s42484-024-00186-9
Bergerault, A., Fortunato, D., & Abreu, R. (2024). Generation of Fixed Margin Binary Matrices Using Quantum Annealing. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 2, pp. 193–198). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.10277
Bucher, D., Porawski, D., Wimmer, B., Nüßlein, J., O’Meara, C., Mohseni, N., Cortiana, G., & Linnhoff-Popien, C. (2025). Evaluating Quantum Optimization for Dynamic Self-Reliant Community Detection. IEEE Transactions on Smart Grid, 16(2), 1339–1350. Scopus. https://doi.org/10.1109/TSG.2024.3483657
Carugno, C., Ferrari Dacrema, M., & Cremonesi, P. (2024). Adaptive Learning for Quantum Linear Regression. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 1, pp. 1595–1599). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.00186
Castro, E. R., Martins, E. O., Sarthour, R. S., Souza, A. M., & Oliveira, I. S. (2024). Improving the convergence of an iterative algorithm for solving arbitrary linear equation systems using classical or quantum binary optimization. Frontiers in Physics, 12. Scopus. https://doi.org/10.3389/fphy.2024.1443977
Chou, Y.-H., Wu, C.-H., Huang, P.-S., Kuo, S.-Y., Jiang, Y.-C., Kuo, S.-Y., & Chang, C.-R. (2024). Hybrid Quantum Annealing with Innovative Trend Ratio Model for Portfolio Optimization. IEEE Congr. Evol. Comput., CEC - Proc. Scopus. https://doi.org/10.1109/CEC60901.2024.10612069
Chou, Y.-H., Wu, C.-H., Huang, P.-S., Shen, J.-Y., Kuo, S.-Y., Kuo, S.-Y., & Chang, C.-R. (2024). Exploring Quantum Annealing for Enhanced International Financial Stock Portfolio Management. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 1, pp. 250–258). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.00038
Codognet, P. (2025). Comparing QUBO models for quantum annealing: Integer encodings for permutation problems. International Transactions in Operational Research, 32(1), 18–37. Scopus. https://doi.org/10.1111/itor.13471
Dziubyna, A. M., ?mierzchalski, T., Gardas, B., Rams, M. M., & Mohseni, M. (2025). Limitations of tensor-network approaches for optimization and sampling: A comparison to quantum and classical Ising machines. Physical Review Applied, 23(5). Scopus. https://doi.org/10.1103/PhysRevApplied.23.054049
Fernandes, G. P. L. M., Fonseca, M. S., Valério, A. G., Carpio, N. A. C., de Assunção, J. M. E. M., Aroca, R. V., Villas-Bôas, C. J., & Thober, D. S. (2025). Invited paper: Enhancing Design Automation with Quantum Algorithms for Chip Design. Proc Des Autom Conf. Scopus. https://doi.org/10.1109/DAC63849.2025.11133257
Ferrari, B., Gnocchi, G., Iori, M., Mascaro, S., Mucciarini, M., Rinaldi, L., Salerno, G., Tartarini, V., & Vezzani, A. (2025). Lookalike Clustering for Customer Segmentation: A Comparative Study of Quantum Annealing and Classical Algorithms. In G. Ochoa (Ed.), GECCO Companion—Proc. Genetic Evolutionary Comput. Conf. Companion (pp. 2433–2440). Association for Computing Machinery, Inc; Scopus. https://doi.org/10.1145/3712255.3734355
Gilbert, V., Rodriguez, J., & Louise, S. (2024). Benchmarking Quantum Annealers with Near-Optimal Minor-Embedded Instances. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 1, pp. 531–537). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.00068
Hosamo, H., Plevris, V., Kraniotis, D., & Rolfsen, C. N. (2025). Can quantum computing surpass classical algorithms in optimizing building performance? A benchmark study with 15,000 simulations. Energy and Buildings, 346. Scopus. https://doi.org/10.1016/j.enbuild.2025.116156
Jallad, T., & Hammad, M. A. (2025). Geometric Hyperplane Intersection Solver: A Matrix-Inversion-Free Framework with Quantum-Neuroevolutionary Enhancements. In K. M. Jaber (Ed.), Proceeding—Int. Conf. Inf. Technol.: Innov. Technol., ICIT (pp. 263–271). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/ICIT64950.2025.11049172
Jiang, J.-R., Shu, Y.-C., & Lin, Q.-Y. (2024). Benchmarks and Recommendations for Quantum, Digital, and GPU Annealers in Combinatorial Optimization. IEEE Access, 12, 125014–125031. Scopus. https://doi.org/10.1109/ACCESS.2024.3455436
Kittichaikoonkij, N., Pongtanyavichai, N., Suwananek, P., Chongstitvatana, P., & Suksen, K. (2025). Benchmarking Quantum Computing for Combinatorial Optimization. Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol., ECTI-CON. Scopus. https://doi.org/10.1109/ECTI-CON64996.2025.11100821
Li, L., Dong, D., & Pan, Y. (2025). Fast numerical solver of Ising optimization problems via pruning and domain selection. Journal of the Franklin Institute, 362(14). Scopus. https://doi.org/10.1016/j.jfranklin.2025.107945
Liu, J., & Moraglio, A. (2025). A Framework for Automatically Setting Multiple Penalty Weights in Quadratic Unconstrained Binary Optimization. In G. Ochoa (Ed.), GECCO Companion—Proc. Genetic Evolutionary Comput. Conf. Companion (pp. 575–578). Association for Computing Machinery, Inc; Scopus. https://doi.org/10.1145/3712255.3726759
Mandal, A. K., Nadim, M., Roy, C. K., Roy, B., & Schneider, K. A. (2024). Evaluating the Performance of a D-Wave Quantum Annealing System for Feature Subset Selection in Software Defect Prediction. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 2, pp. 103–108). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.10261
Mattesi, M., Asproni, L., Mattia, C., Tufano, S., Ranieri, G., Caputo, D., & Corbelletto, D. (2024). Diversifying Investments and Maximizing Sharpe Ratio: A Novel Quadratic Unconstrained Binary Optimization Formulation. Quantum Reports, 6(2), 244–262. Scopus. https://doi.org/10.3390/quantum6020018
Naghmouchi, M. Y., & da Silva Coelho, W. D. S. (2024). Mixed-integer linear programming solver using Benders decomposition assisted by a neutral-atom quantum processor. Physical Review A, 110(1). Scopus. https://doi.org/10.1103/PhysRevA.110.012434
Nenno, D. M., & Caspari, A. (2024). Dynamic optimization on quantum hardware: Feasibility for a process industry use case. Computers and Chemical Engineering, 186. Scopus. https://doi.org/10.1016/j.compchemeng.2024.108704
Nigro, L., Sala, S., Amendola, A., & Prati, E. (2025). Leveraging Quantum Annealing for Layout Optimization. Advanced Quantum Technologies. Scopus. https://doi.org/10.1002/qute.202500358
Osaba, E., & Miranda-Rodriguez, P. (2025). D-Wave’s Nonlinear-Program Hybrid Solver: Description and Performance Analysis. IEEE Access, 13, 4724–4736. Scopus. https://doi.org/10.1109/ACCESS.2025.3525620
Pellini, R., & Ferrari Dacrema, M. (2024). Analyzing the effectiveness of quantum annealing with meta-learning. Quantum Machine Intelligence, 6(2). Scopus. https://doi.org/10.1007/s42484-024-00179-8
Rocutto, L., Maronese, M., Dragoni, D., Cavalli, A., & Cavazzoni, C. (2024). Comparing Adiabatic Quantum Computers for satellite images feature extraction. Future Generation Computer Systems, 159, 105–113. Scopus. https://doi.org/10.1016/j.future.2024.04.027
Sakuler, W., Oberreuter, J. M., Aiolfi, R., Asproni, L., Roman, B., & Schiefer, J. (2025). A real-world test of portfolio optimization with quantum annealing. Quantum Machine Intelligence, 7(1). Scopus. https://doi.org/10.1007/s42484-025-00268-2
Salloum, H., Zhanalin, S., Badr, A. A., & Kholodov, Y. (2025). Mini-scale traffic flow optimization: An iterative QUBOs approach converting from hybrid solver to pure quantum processing unit. Scientific Reports, 15(1). Scopus. https://doi.org/10.1038/s41598-025-04568-2
?mierzchalski, T., Paw?owski, J., Przybysz, A., Pawela, ?., Pucha?a, Z., Koniorczyk, M., Gardas, B., Deffner, S., & Domino, K. (2024). Hybrid quantum-classical computation for automatic guided vehicles scheduling. Scientific Reports, 14(1). Scopus. https://doi.org/10.1038/s41598-024-72101-y
Uotila, V. (2025). Left-deep join order selection with higher-order unconstrained binary optimization on quantum computers. Frontiers in Computer Science, 7. Scopus. https://doi.org/10.3389/fcomp.2025.1649354
Valecha, K., Yeole, A., Salian, A., & Mathur, S. (2024). Empirical Analysis of Classical and Quantum Algorithms for Portfolio Optimization: Enhancing Financial Decision-Making Through Quantum Computing. Int. Conf. Sustain. Commun. Networks Appl., ICSCNA - Proc., 1085–1090. Scopus. https://doi.org/10.1109/ICSCNA63714.2024.10864082
van der Schoot, W., Wezeman, R., Neumann, N., Phillipson, F., & Kooij, R. (2024). Extending the Q-Score to an Application-Level Quantum Metric Framework. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 1, pp. 941–951). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.00113
Venkatesh, S. M., Macaluso, A., Arenas, D., Klusch, M., & Dengel, A. (2025). I-QLS: Quantum-Supported Algorithm for Least Squares Optimization in Non-linear Regression. In M. H. Lees, W. Cai, S. A. Cheong, Y. Su, D. Abramson, J. J. Dongarra, & P. M. A. Sloot (Eds.), Lect. Notes Comput. Sci.: Vol. 15904 LNCS (pp. 19–34). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-97629-2_2
Xu, H., & Pothen, A. (2024). Divide and Conquer-based Quantum Algorithms for Maximum Independent Set on Large Separable Graphs. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Eds.), Proc. - IEEE Quantum Week , QCE (Vol. 1, pp. 87–97). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE60285.2024.00020
Authors
Copyright (c) 2025 Muh. Nur, Rina Farah, Nina Anis

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.