Engineering Hybrid Quantum Systems: Strong Coupling Between Nitrogen-Vacancy Centers and a Superconducting Resonator
Abstract
Hybrid quantum systems that integrate solid-state qubits with superconducting circuits have emerged as a promising architecture for scalable quantum information processing. Achieving strong coherent coupling between distinct quantum subsystems, such as spin ensembles and microwave resonators, remains a critical challenge in realizing hybrid quantum technologies. This study aims to engineer and characterize a hybrid platform that couples nitrogen-vacancy (NV) centers in diamond with a superconducting coplanar waveguide resonator. A combination of cryogenic microwave spectroscopy and time-domain measurements was employed to evaluate coupling strength, coherence times, and collective spin photon interactions at millikelvin temperatures. The experimental results demonstrated a vacuum Rabi splitting of 22 MHz, confirming the realization of a strong coupling regime between the NV spin ensemble and the superconducting resonator. The coherence lifetime of the NV centers remained above 100 ?s under optimized magnetic field alignment, ensuring stable quantum-state transfer. The findings reveal that hybrid systems combining spin-based and superconducting components can serve as viable interfaces for quantum memory and quantum communication nodes. The study concludes that engineering such strong spin–photon coupling represents a foundational step toward the development of coherent, scalable hybrid quantum networks.
Full text article
References
Bhattacharyya, S. (2024). Carbon superstructures: From quantum transport to quantum computation. In Carbon Superstructures: From Quantum Transport to Quantum Comput. (p. 307). CRC Press; Scopus. https://doi.org/10.1201/9781003316411
Chen, H.-J., Sun, Y., Zheng, D.-D., & Pan, G.-X. (2025). Mechanical Gain Enhanced Propagation of Light in a Hybrid Spin-Mechanical System. Advanced Quantum Technologies, 8(7). Scopus. https://doi.org/10.1002/qute.202400344
Du, F.-F., Ma, M., & Liu, W.-Y. (2025). Preparation of Arbitrary High-Fidelity Decoherence-Free States for a Four-Qubit Hybrid System via Whispering-Gallery-Mode Microresonator. Annalen Der Physik, 537(5). Scopus. https://doi.org/10.1002/andp.202400435
Du, F.-F., Yao, Y., Li, L.-H., & Wang, Y.-Y. (2025). Error-predicted interconversion for hybrid photon-spin entangled states. Laser Physics Letters, 22(9). Scopus. https://doi.org/10.1088/1612-202X/ae07b1
Fukami, M., Marcks, J. C., Candido, D. R., Weiss, L. R., Soloway, B., Sullivan, S. E., Delegan, N., Heremans, F. J., Flatté, M. E., & Awschalom, D. D. (2024). Magnon-mediated qubit coupling determined via dissipation measurements. Proceedings of the National Academy of Sciences of the United States of America, 121(2). Scopus. https://doi.org/10.1073/pnas.2313754120
Gong, M., Xu, J., Yu, M., Zhang, L., Li, Q., Wang, N., & Cai, J. (2024). Hybrid diamond quantum sensor with submicrokelvin resolution under ambient conditions. Physical Review Applied, 21(2). Scopus. https://doi.org/10.1103/PhysRevApplied.21.024053
Guo, X., Xie, M., Addhya, A., Linder, A., Zvi, U., Wang, S., Yu, X., Deshmukh, T. D., Liu, Y., Hammock, I. N., Li, Z., DeVault, C. T., Butcher, A., Esser-Kahn, A. P., Awschalom, D. D., Delegan, N., Maurer, P. C., Heremans, F. J., & High, A. A. (2024). Direct-bonded diamond membranes for heterogeneous quantum and electronic technologies. Nature Communications, 15(1). Scopus. https://doi.org/10.1038/s41467-024-53150-3
Hei, X.-L., Li, P.-B., Pan, X.-F., & Nori, F. (2023). Enhanced Tripartite Interactions in Spin-Magnon-Mechanical Hybrid Systems. Physical Review Letters, 130(7). Scopus. https://doi.org/10.1103/PhysRevLett.130.073602
Ji, J.-W., Kimiaee Asadi, F. K., Heshami, K., & Simon, C. (2023). Noncryogenic Quantum Repeaters with hot Hybrid Alkali-Noble Gases. Physical Review Applied, 19(5). Scopus. https://doi.org/10.1103/PhysRevApplied.19.054063
Kejriwal, A., Shishir, D., Pujari, S., & Saha, K. (2023). Decoupling nuclear spins via interaction-induced freezing in nitrogen vacancy centers in diamond. Quantum Information Processing, 22(7). Scopus. https://doi.org/10.1007/s11128-023-04040-y
Kim, K., Lee, D., Na, Y., & Lee, D. (2025). Magnetic field mediated temperature sensing with a solid-state spin qubit: A proposal for hybrid quantum thermometry with a permanent magnet. Current Applied Physics, 78, 60–66. Scopus. https://doi.org/10.1016/j.cap.2025.07.001
Kumar, T., Rath, S., & Bhattacherjee, A. B. (2023). Dynamics of Double Nitrogen-Vacancy Centre in a Photonic Crystal Nanocavity: Optical Bistability and Four-Wave Mixing. In Springer. Proc. Mater. (Vol. 28, pp. 439–449). Springer Nature; Scopus. https://doi.org/10.1007/978-981-99-4685-3_63
Li, J.-M., & Fei, S.-M. (2025). Generating quantum entanglement of phonons assisted by hybrid systems. International Journal of Quantum Information, 23(4). Scopus. https://doi.org/10.1142/S0219749925500091
Li, X., Yang, W., Tang, Y., Liu, X., He, C., Zhu, J., & Yao, P. (2024). Quantum Information Transfer in Coupling System of NV Centers and Silicon-Based Optical Waveguides. Guangxue Xuebao/Acta Optica Sinica, 44(21). Scopus. https://doi.org/10.3788/AOS241022
Li, Y., Hou, C., Jia, Q., Zheng, D., Gao, J., Yang, Y., Wen, H., Li, X., Guo, H., Li, Z., Sugawara, Y., Li, Y., Tang, J., Ma, Z., & Liu, J. (2025). High robustness of NV sensors in diamond using hybrid heterodyne technique for audio recognition. Optics and Laser Technology, 187. Scopus. https://doi.org/10.1016/j.optlastec.2025.112780
Liang, L., Zheng, P., Jia, S., Ray, K., Chen, Y., & Barman, I. (2023). Plasmonic Nanodiamonds. Nano Letters, 23(12), 5746–5754. Scopus. https://doi.org/10.1021/acs.nanolett.3c01514
Liao, Q.-H., Deng, C.-T., & Qiu, H.-Y. (2024). Probe absorption characteristics and Kerr effect of a hybrid phonon-spin-magnon system. European Physical Journal D, 78(8). Scopus. https://doi.org/10.1140/epjd/s10053-024-00896-6
Liu, G.-Q., Liu, R.-B., & Li, Q. (2023). Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors. Accounts of Chemical Research, 56(2), 95–105. Scopus. https://doi.org/10.1021/acs.accounts.2c00576
Liu, H.-Y., Yin, T.-S., & Chen, A. (2024). Magnetically Induced Two-Phonon Blockade in a Hybrid Spin–Mechanical System. Magnetochemistry, 10(6). Scopus. https://doi.org/10.3390/magnetochemistry10060041
Liu, R., Liao, Q.-H., Zhao, Q., & Zhang, Z. (2023). Enhanced entanglement in the hybrid optomechanical system assisted by the nitrogen-vacancy center ensemble in diamond. European Physical Journal D, 77(5). Scopus. https://doi.org/10.1140/epjd/s10053-023-00654-0
Liu, T., Xu, J., Zhang, Y., Yu, Y., Su, Q.-P., Zhou, Y.-H., & Yang, C.-P. (2023). Efficient scheme for implementing a hybrid Toffoli gate with two NV ensembles simultaneously controlling a single superconducting qubit. Applied Physics Letters, 123(13). Scopus. https://doi.org/10.1063/5.0169902
Macarios, C. M., Pittner, J., Prasad, V. K., & Fekl, U. (2024). Heteroatom-vacancy centres in molecular nanodiamonds: A computational study of organic molecules possessing triplet ground states through ?-overlap. Physical Chemistry Chemical Physics, 26(39), 25412–25417. Scopus. https://doi.org/10.1039/d4cp02667e
McLaughlin, N., Li, S., Brock, J. A., Zhang, S., Lu, H., Huang, M., Xiao, Y., Zhou, J., Tserkovnyak, Y., Fullerton, E. E., Wang, H., & Du, C. R. (2023). Local Control of a Single Nitrogen-Vacancy Center by Nanoscale Engineered Magnetic Domain Wall Motion. ACS Nano, 17(24), 25689–25696. Scopus. https://doi.org/10.1021/acsnano.3c10633
Muhammad, N., & Majidi, M. A. (2024). Optimizing Control of a Hybrid Quantum System of Nitrogen-Vacancy Centers and Superconducting Transmon Qubits. In R. Fahdiran, H. Suhendar, T. B. Prayitno, Umiatin, H. Nasbey, W. Indrasari, & W. Fitriani (Eds.), J. Phys. Conf. Ser. (Vol. 2866, Issue 1). Institute of Physics; Scopus. https://doi.org/10.1088/1742-6596/2866/1/012080
Pillai, A., Elanchezhian, M., Virtanen, T., Conti, S., & Ajoy, A. (2023). Electron-to-nuclear spectral mapping via dynamic nuclear polarization. Journal of Chemical Physics, 159(15). Scopus. https://doi.org/10.1063/5.0157954
Rezinkina, M., Rezinkin, O., Braxmaier, C., & Jelezko, F. (2024). Miniature Hybrid Quantum Optomechanical Sensors for Acceleration Measurements. IEEE KhPI Week Adv. Technol., KhPIWeek - Conf. Proc. Scopus. https://doi.org/10.1109/KHPIWEEK61434.2024.10877973
Sotoma, S. (2025). Functionalization of Quantum Sensors and Measurement of Cellular Physicochemical Quantities. Bunseki Kagaku, 74(7.8), 341–349. Scopus. https://doi.org/10.2116/bunsekikagaku.74.341
Sun, H., Zhang, Z., Liu, Y., Chen, G., Li, T., & Liao, M. (2023). Diamond MEMS: From Classical to Quantum. Advanced Quantum Technologies, 6(11). Scopus. https://doi.org/10.1002/qute.202300189
Takada, K., Katsumi, R., Kawai, K., Sato, D., & Yatsui, T. (2025). Alignment-tolerant hybrid integration of a diamond quantum sensor on a silicon nitride photonic waveguide. Optics Express, 33(11), 22769–22779. Scopus. https://doi.org/10.1364/OE.559486
Wang, B.-L., Hei, X.-L., Dong, X.-L., Yao, X.-Y., Chen, J.-Q., Qiao, Y.-F., Li, F.-L., & Li, P.-B. (2023). Hybrid Quantum Systems with Strong Magnetic Coupling of a Magnetic Vortex to a Nanomechanical Resonator. Physical Review Applied, 19(2). Scopus. https://doi.org/10.1103/PhysRevApplied.19.024045
Wang, G., Li, C., Tang, H., Li, B., Madonini, F., Alsallom, F. F., Sun, W. K. C., Peng, P., Villa, F., Li, J., & Cappellaro, P. (2023). Manipulating solid-state spin concentration through charge transport. Proceedings of the National Academy of Sciences of the United States of America, 120(32). Scopus. https://doi.org/10.1073/pnas.2305621120
Wang, G., Li, Z., Qin, X., Yang, Z., Li, X., Wu, X., Zhou, Y., & Chen, Y. (2024). Photon–phonon entanglement and spin squeezing via dynamically strain-mediated Kerr nonlinearity in dressed nitrogen–vacancy centers. Optics and Laser Technology, 176. Scopus. https://doi.org/10.1016/j.optlastec.2024.110984
Wang, H., Wu, S., Jacobs, K., Duan, Y., Englund, D. R., & Trusheim, M. E. (2025). Cavity-Enhanced Solid-State Nuclear Spin Gyroscope. Physical Review Letters, 134(18). Scopus. https://doi.org/10.1103/PhysRevLett.134.183603
Wang, Y., Su, Q.-P., Liu, T., Zhang, G.-Q., Feng, W., Yu, Y., & Yang, C.-P. (2024). Long-distance transmission of arbitrary quantum states between spatially separated microwave cavities. Optics Express, 32(3), 4728–4744. Scopus. https://doi.org/10.1364/OE.517001
Wang, Y., Zhang, H.-L., Wu, J.-L., Song, J., Yang, K., Qin, W., Jing, H., & Kuang, L.-M. (2023). Quantum parametric amplification of phonon-mediated magnon-spin interaction. Science China: Physics, Mechanics and Astronomy, 66(11). Scopus. https://doi.org/10.1007/s11433-023-2180-x
Xie, D., & Xu, C. (2024). Quantum estimation of tripartite coupling in spin-magnon-mechanical hybrid systems. Results in Physics, 61. Scopus. https://doi.org/10.1016/j.rinp.2024.107735
Yan, G. Q., McLaughlin, N., Yamamoto, T., Li, S., Nozaki, T., Yuasa, S., Du, C. R., & Wang, H. (2024). Coherent Driving of a Single Nitrogen Vacancy Center by a Resonant Magnetic Tunnel Junction. Nano Letters, 24(45), 14273–14278. Scopus. https://doi.org/10.1021/acs.nanolett.4c03882