Diamond-Based Quantum Sensors for High-Resolution Magnetic Field Imaging of Neural Activity

Muhammad Firdaus A (1), Ethan Tan (2), Ava Lee (3)
(1) Universitas Sains dan Teknologi Jayapura, Indonesia,
(2) National University of Singapore (NUS), Singapore,
(3) Nanyang Technological University (NTU), Singapore

Abstract

Advances in quantum sensing technologies have opened new opportunities for noninvasive, high-resolution detection of neural activity, particularly through diamond-based quantum sensors utilizing nitrogen–vacancy (NV) centers. Conventional neuroimaging techniques often face limitations in spatial resolution, temporal precision, and sensitivity to weak magnetic fields generated by neuronal currents. These constraints motivate the development of quantum-enhanced sensing approaches capable of capturing neural dynamics with unprecedented fidelity. This study aims to evaluate the performance of diamond-based quantum sensors for high-resolution magnetic field imaging and to assess their potential for real-time neural activity monitoring. A combined experimental and simulation-based methodology was employed, involving controlled magnetic field measurements using NV-center ensembles, calibration against established magnetometry systems, and computational modeling of neuronal magnetic signatures. The results show that NV-based sensors achieve sub-micron spatial resolution and detect magnetic fields in the nanotesla range, significantly outperforming traditional optical and electromagnetic techniques. The findings further demonstrate strong temporal responsiveness, enabling the reconstruction of fast neuronal firing patterns. The study concludes that diamond-based quantum sensors represent a promising frontier for next-generation neuroimaging, offering a scalable, minimally invasive platform for studying neural circuits with high spatial–temporal precision.


 

Full text article

Generated from XML file

References

Amrein, P., Bruckmaier, F., Jia, F., Bucher, D. B., Zaitsev, M., & Littin, S. (2023). Optimal bi-planar gradient coil configurations for diamond nitrogen-vacancy based diffusion-weighted NMR experiments. Magnetic Resonance Materials in Physics, Biology and Medicine, 36(6), 921–932. Scopus. https://doi.org/10.1007/s10334-023-01111-0

Babashah, H., Shirzad, H., Losero, E., Goblot, V., Galland, C., & Chipaux, M. (2023). Optically detected magnetic resonance with an open source platform. SciPost Physics Core, 6(4). Scopus. https://doi.org/10.21468/SciPostPhysCore.6.4.065

Dhankhar, R., Singh, N., & Nair, R. V. (2023). Optical readout of electronic spin state of nitrogen-vacancy center in nanodiamonds at room-temperature. IEEE Workshop Recent Adv. Photonics, WRAP. Scopus. https://doi.org/10.1109/WRAP59682.2023.10712935

Flinn, B. T., Radu, V., Fay, M. W., Tyler, A. J., Pitcairn, J., Cliffe, M. J., Weare, B. L., Stoppiello, C. T., Mather, M. L., & N. Khlobystov, A. N. (2023). Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid. Nanoscale Advances, 5(23), 6423–6434. Scopus. https://doi.org/10.1039/d3na00155e

Gao, Y., Luo, Z., Guo, H., Wen, H. F., Li, Z., Ma, Z., Tang, J., & Liu, J. (2023). Robustness improvement of a nitrogen-vacancy magnetometer by a double driving method. Review of Scientific Instruments, 94(6). Scopus. https://doi.org/10.1063/5.0147094

Guo, Y., Zhao, J., Weng, C., Lin, S., Yang, Y., Zhu, W., Lou, L., & Wang, G. (2023). Robust diamond-embedded microwave antenna for optimizing quantum sensing using nitrogen-vacancy center ensembles. Applied Physics Letters, 123(26). Scopus. https://doi.org/10.1063/5.0185262

Healey, A. J., Scholten, S. C., Nadarajah, A., Singh, P., Dontschuk, N., Hollenberg, L. C. L., Simpson, D. A., & Tetienne, J.-P. (2023). On the creation of near-surface nitrogen-vacancy centre ensembles by implantation of type Ib diamond. Journal of Materials Research, 38(22), 4848–4857. Scopus. https://doi.org/10.1557/s43578-023-01075-w

Ibrahim, M. I. (2023). Scalable Hybrid CMOS-Diamond Quantum Magnetometers. Proc. ACM Great Lakes Symp. VLSI GLSVLSI, 115–116. Scopus. https://doi.org/10.1145/3583781.3590215

Jiang, Z., Cai, H., Cernansky, R., Liu, X., & Gao, W. (2023). Quantum sensing of radio-frequency signal with NV centers in SiC. Science Advances, 9(20). Scopus. https://doi.org/10.1126/sciadv.adg2080

Kumar, J., Yudilevich, D., Smooha, A., Zohar, I., Pariari, A. K., Stöhr, R., Denisenko, A., Hücker, M., & Finkler, A. (2023). Room Temperature Relaxometry of Single Nitrogen Vacancy Centers in Proximity to ?-RuCl3 Nanoflakes. Nano Letters. Scopus. https://doi.org/10.1021/acs.nanolett.3c05090

Li, M., Zhang, N., Xu, L., Zhang, J., Bian, G., Fan, P., Wang, S., & Yuan, H. (2023). Near-Field Sensing of Microwave Magnetic Field Phase Difference Enabled by N - V -Center Spins. Physical Review Applied, 19(5). Scopus. https://doi.org/10.1103/PhysRevApplied.19.054088

Liang, H., Jiao, M., Huang, Y., Yu, P., Ye, X.-Y., Wang, Y., Xie, Y., Cai, Y.-F., Rong, X., & Du, J. (2023). New constraints on exotic spin-dependent interactions with an ensemble-NV-diamond magnetometer. National Science Review, 10(7). Scopus. https://doi.org/10.1093/nsr/nwac262

Liang, L., Zheng, P., Jia, S., Ray, K., Chen, Y., & Barman, I. (2023). Plasmonic Nanodiamonds. Nano Letters, 23(12), 5746–5754. Scopus. https://doi.org/10.1021/acs.nanolett.3c01514

Lin, X., Fan, J.-W., Ye, R., Zhou, M., Song, Y., Lu, D., & Xu, N. (2023). Online optimization for optical readout of a single electron spin in diamond. Frontiers of Physics, 18(2). Scopus. https://doi.org/10.1007/s11467-022-1235-5

Liu, G.-Q., Liu, R.-B., & Li, Q. (2023). Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors. Accounts of Chemical Research, 56(2), 95–105. Scopus. https://doi.org/10.1021/acs.accounts.2c00576

Liu, M., Wang, C., Li, X., Nie, Q., & Wang, H. (2023). Research on DC Current Measurement Method based on Solid-state Quantum. Proc. - IEEE Congr. Cybermatics: IEEE Int. Conf. Internet Things, iThings, IEEE Green Comput. Commun., GreenCom, IEEE Cyber, Phys. Soc. Comput., CPSCom IEEE Smart Data, SmartData, 753–757. Scopus. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00132

Liu, Y., Li, Z., Zhang, H., Guo, H., Shi, Z., & Ma, Z. (2023). Research on Micro-Displacement Measurement Accuracy Enhancement Method Based on Ensemble NV Color Center. Micromachines, 14(5). Scopus. https://doi.org/10.3390/mi14050938

Liu, Y., Lin, H., Zhang, S., Dong, Y., Chen, X.-D., & Sun, F.-W. (2023). Optical Fiber Quantum Sensing Based on Diamond Nitrogen-Vacancy Center. Laser and Optoelectronics Progress, 60(11). Scopus. https://doi.org/10.3788/LOP230704

Losero, E., Jagannath, S., Pezzoli, M., Goblot, V., Babashah, H., Lashuel, H. A., Galland, C., & Quack, N. (2023). Neuronal growth on high-aspect-ratio diamond nanopillar arrays for biosensing applications. Scientific Reports, 13(1). Scopus. https://doi.org/10.1038/s41598-023-32235-x

Neuling, N. R., Allert, R. D., & Bucher, D. B. (2023). Prospects of single-cell nuclear magnetic resonance spectroscopy with quantum sensors. Current Opinion in Biotechnology, 83. Scopus. https://doi.org/10.1016/j.copbio.2023.102975

Qin, Y., Wang, Z., Guo, H., Tang, J., & Liu, J. (2023). Sensing technology of nitrogen vacancy color center of diamond. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 44(9), 53–67. Scopus. https://doi.org/10.19650/j.cnki.cjsi.J2311413

Razeghi, M., Khodaparast, G. A., & Vitiello, M. S. (Eds.). (2023). Quantum Sensing and Nano Electronics and Photonics XIX. In Proc SPIE Int Soc Opt Eng (Vol. 12430). SPIE; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159721479&partnerID=40&md5=9441d590529174a064817c6eb1984b47

Takou, E., Barnes, E., & Economou, S. E. (2023). Precise Control of Entanglement in Multinuclear Spin Registers Coupled to Defects. Physical Review X, 13(1). Scopus. https://doi.org/10.1103/PhysRevX.13.011004

Wang, X., Xu, J., Ge, S., Zou, L., Sang, D., Fan, J., & Wang, Q. (2023). Recent applications of nanodiamond quantum biosensors: A review. APL Materials, 11(9). Scopus. https://doi.org/10.1063/5.0170145

Xu, N., Zhou, F., Ye, X.-Y., Lin, X., Chen, B., Zhang, T., Yue, F., Chen, B., Wang, Y., & Du, J. (2023). Noise Prediction and Reduction of Single Electron Spin by Deep-Learning-Enhanced Feedforward Control. Nano Letters, 23(7), 2460–2466. Scopus. https://doi.org/10.1021/acs.nanolett.2c03449

Zheng, P., Liang, L., Arora, S., Ray, K., Semancik, S., & Barman, I. (2023). Pyramidal Hyperbolic Metasurfaces Enhance Spontaneous Emission of Nitrogen-Vacancy Centers in Nanodiamond. Advanced Optical Materials, 11(6). Scopus. https://doi.org/10.1002/adom.202202548

Zohar, I., Haylock, B., Romach, Y., Arshad, M. J., Halay, N., Drucker, N., Stöhr, R., Denisenko, A., Cohen, Y., Bonato, C., & Finkler, A. (2023). Real-time frequency estimation of a qubit without single-shot-readout. Quantum Science and Technology, 8(3). Scopus. https://doi.org/10.1088/2058-9565/acd415

Authors

Muhammad Firdaus A
daud.ustj@gmail.com (Primary Contact)
Ethan Tan
Ava Lee
A, M. F., Tan, E., & Lee, A. (2025). Diamond-Based Quantum Sensors for High-Resolution Magnetic Field Imaging of Neural Activity. Journal of Tecnologia Quantica, 2(5), 224–237. https://doi.org/10.70177/quantica.v2i5.2795

Article Details