Quantum Machine Learning for Drug Discovery: Accelerating the Simulation of Molecular Hamiltonians on Noisy Intermediate-Scale Quantum (NISQ) Devices
Abstract
Drug discovery increasingly relies on accurate simulation of molecular Hamiltonians, yet classical computational methods face exponential scaling barriers when modeling complex quantum systems. Recent advances in quantum machine learning (QML) and the availability of Noisy Intermediate-Scale Quantum (NISQ) devices offer new opportunities to accelerate molecular simulation despite hardware noise and qubit limitations. This study aims to evaluate the effectiveness of QML-based variational algorithms in improving the efficiency and accuracy of Hamiltonian simulation for drug-relevant molecules on NISQ platforms. A hybrid quantum–classical methodology was employed, combining variational quantum eigensolvers, noise-aware circuit optimization, and supervised learning models trained to predict energy landscapes. Experimental simulations were performed using IBM-Q and Rigetti NISQ architectures, supported by classical benchmarks for validation. The results demonstrate that QML-enhanced variational circuits significantly reduce computational depth while maintaining competitive accuracy compared to classical methods, particularly for medium-sized molecular systems. The findings also reveal that noise-adaptive training improves algorithm robustness, enabling more reliable energy estimation under realistic quantum noise conditions. The study concludes that QML provides a promising pathway for accelerating early-stage drug discovery by enabling efficient molecular Hamiltonian simulation on current-generation quantum hardware. Further integration of error mitigation and scalable QML frameworks will be essential for future advancements.
Full text article
References
Akbari Asanjan, A. A., Brady, L., Gonzalez Izquierdo, Z. G., Lott, P., Memarzadeh, M., Suri, N., Bell, D., Rieffel, E., & Grabbe, S. (2023). Quantum-Assisted Variational Segmentation for Image-to-Image Wildfire Detection Using Satellite Data. Dig Int Geosci Remote Sens Symp (IGARSS), 2023-July, 624–626. Scopus. https://doi.org/10.1109/IGARSS52108.2023.10282464
Arya, S., Ansar, S. A., & Aggarwal, S. (2023). Quantum Odyssey: Traversing the NISQ Era’s Quantum Terrain. In N. Chaudhary (Ed.), Proc. - Int. Conf. Technol. Adv. Comput. Sci., ICTACS (pp. 686–694). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/ICTACS59847.2023.10390350
Bordoni, S., Papaluca, A., Buttarini, P., Sopena, A., Carrazza, S., & Giagu, S. (2023). Quantum circuit noise simulation with reinforcement learning. In M. Baioletti, M. A. Gonzalez, A. Oddi, R. Rasconi, & R. Varela (Eds.), CEUR Workshop Proc. (Vol. 3586, pp. 30–36). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180747101&partnerID=40&md5=a34375508a7fca535d4510f26e2c7bb2
Bordoni, S., Stanev, D., Santantonio, T., & Giagu, S. (2023). Long-Lived Particles Anomaly Detection with Parametrized Quantum Circuits. Particles, 6(1), 297–311. Scopus. https://doi.org/10.3390/particles6010016
Brence, J., Mihailovi?, D., Kabanov, V. V., Todorovski, L., Džeroski, S., & Vodeb, J. (2023). Boosting the performance of quantum annealers using machine learning. Quantum Machine Intelligence, 5(1). Scopus. https://doi.org/10.1007/s42484-022-00092-y
Chen, T., Zhang, Z., Wang, H., Gu, J., Li, Z., Pan, D. Z., Chong, F. T., Han, S., & Wang, Z. (2023). QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum Circuits. In H. Muller, Y. Alexev, A. Delgado, & G. Byrd (Eds.), Proc. - IEEE Int. Conf. Quantum Comput. Eng., QCE (Vol. 1, pp. 51–62). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE57702.2023.00015
Chu, C., Skipper, G., Swany, M., & Chen, F. (2023). IQGAN: Robust Quantum Generative Adversarial Network for Image Synthesis On NISQ Devices. ICASSP IEEE Int Conf Acoust Speech Signal Process Proc, 2023-June. Scopus. https://doi.org/10.1109/ICASSP49357.2023.10096772
Das, S., Zhang, J., Martina, S., Suter, D., & Caruso, F. (2023). Quantum pattern recognition on real quantum processing units. Quantum Machine Intelligence, 5(1). Scopus. https://doi.org/10.1007/s42484-022-00093-x
Di, S., Xu, J., Shu, G., Feng, C., Ding, X., & Shan, Z. (2023). Amplitude transformed quantum convolutional neural network. Applied Intelligence, 53(18), 20863–20873. Scopus. https://doi.org/10.1007/s10489-023-04581-w
Gulbahar, B. (2023). Encrypted quantum state tomography with phase estimation for quantum Internet. Quantum Information Processing, 22(7). Scopus. https://doi.org/10.1007/s11128-023-04034-w
Halder, S., Patra, C., Mondal, D., & Maitra, R. (2023). Machine learning aided dimensionality reduction toward a resource efficient projective quantum eigensolver: Formal development and pilot applications. Journal of Chemical Physics, 158(24). Scopus. https://doi.org/10.1063/5.0155009
Hu, Z., Wolle, R., Tian, M., Guan, Q., Humble, T., & Jiang, W. (2023). Toward Consistent High-Fidelity Quantum Learning on Unstable Devices via Efficient In-Situ Calibration. In H. Muller, Y. Alexev, A. Delgado, & G. Byrd (Eds.), Proc. - IEEE Int. Conf. Quantum Comput. Eng., QCE (Vol. 1, pp. 848–858). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE57702.2023.00099
Kashif, M., & Al-Kuwari, S. (2023). The impact of cost function globality and locality in hybrid quantum neural networks on NISQ devices. Machine Learning: Science and Technology, 4(1). Scopus. https://doi.org/10.1088/2632-2153/acb12f
Khanal, B., & Rivas, P. (2023). Evaluating the Impact of Noise on Variational Quantum Circuits in NISQ Era Devices. Proc. - Congr. Comput. Sci., Comput. Eng., Appl. Comput., CSCE, 1658–1664. Scopus. https://doi.org/10.1109/CSCE60160.2023.00272
La Cour, B., Yeh, L., & Osinski, M. (Eds.). (2023). Proceedings—2023 IEEE International Conference on Quantum Computing and Engineering, QCE 2023. In Proc. - IEEE Int. Conf. Quantum Comput. Eng., QCE (Vol. 3). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180145900&partnerID=40&md5=ccc402a7ff5bff4382c347ec99942403
Li, A., Stein, S., Krishnamoorthy, S., & Ang, J. (2023). QASMBench: A Low-Level Quantum Benchmark Suite for NISQ Evaluation and Simulation. ACM Transactions on Quantum Computing, 4(2). Scopus. https://doi.org/10.1145/3550488
Li, J., Wang, Z., Hu, Z., Date, P., Li, A., & Jiang, W. (2023). A Novel Spatial-Temporal Variational Quantum Circuit to Enable Deep Learning on NISQ Devices. In H. Muller, Y. Alexev, A. Delgado, & G. Byrd (Eds.), Proc. - IEEE Int. Conf. Quantum Comput. Eng., QCE (Vol. 1, pp. 272–282). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE57702.2023.00038
Li, T., Yao, Z., Huang, X., Zou, J., Lin, T., & Li, W. (2023). Application of the Quantum Kernel Algorithm on the Particle Identification at the BESIII Experiment. J. Phys. Conf. Ser., 2438(1). Scopus. https://doi.org/10.1088/1742-6596/2438/1/012071
Lindsay, J., & Zand, R. (2023). A Novel Stochastic LSTM Model Inspired by Quantum Machine Learning. Proc. - Int. Symp. Qual. Electron. Des., ISQED, 2023-April. Scopus. https://doi.org/10.1109/ISQED57927.2023.10129344
Marshall, S. C., Gyurik, C., & Dunjko, V. (2023). High Dimensional Quantum Machine Learning With Small Quantum Computers. Quantum, 7. Scopus. https://doi.org/10.22331/q-2023-08-09-1078
Muller, H., Alexev, Y., Delgado, A., & Byrd, G. (Eds.). (2023). Proceedings—2023 IEEE International Conference on Quantum Computing and Engineering, QCE 2023. In Proc. - IEEE Int. Conf. Quantum Comput. Eng., QCE (Vol. 2). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180145222&partnerID=40&md5=625d7596fda3ec99f28db71c7e04cf2b
Ovalle-Magallanes, E., Alvarado-Carrillo, D. E., Avina-Cervantes, J. G., Cruz-Aceves, I., & Ruiz-Pinales, J. (2023). Quantum angle encoding with learnable rotation applied to quantum–classical convolutional neural networks. Applied Soft Computing, 141. Scopus. https://doi.org/10.1016/j.asoc.2023.110307
Peral-García, D., Cruz-Benito, J., & García-Peñalvo, F. J. (2023). Development of Algorithms and Methods for the Simulation and Improvement in the Quantum Natural Language Processing Area. In Lect. Notes Educ. Technol. (pp. 1238–1245). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-99-0942-1_130
Saravanan, V., & Saeed, S. M. (2023). Data-Driven Reliability Models of Quantum Circuit: From Traditional ML to Graph Neural Network. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(5), 1477–1489. Scopus. https://doi.org/10.1109/TCAD.2022.3202430
Scholl, P., Shaw, A. L., Tsai, R. B.-S., Finkelstein, R., Choi, J., & Endres, M. (2023). Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature, 622(7982), 273–278. Scopus. https://doi.org/10.1038/s41586-023-06516-4
Senapati, P., Wang, Z., Jiang, W., Humble, T., Fang, B., Xu, S., & Guan, Q. (2023). Towards Redefining the Reproducibility in Quantum Computing: A Data Analysis Approach on NISQ Devices. In H. Muller, Y. Alexev, A. Delgado, & G. Byrd (Eds.), Proc. - IEEE Int. Conf. Quantum Comput. Eng., QCE (Vol. 1, pp. 468–474). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE57702.2023.00060
Sharma, A., Sharma, H. K., & Sharma, K. (2023). QNN Learning Algorithm to Diversify the Framework in Deep Learning. IEEE Uttar Pradesh Sect. Int. Conf. Electr., Electron. Comput. Eng., UPCON, 982–987. Scopus. https://doi.org/10.1109/UPCON59197.2023.10434320
Wang, R., Richerme, P., & Chen, F. (2023). A hybrid quantum-classical neural network for learning transferable visual representation. Quantum Science and Technology, 8(4). Scopus. https://doi.org/10.1088/2058-9565/acf1c7
Watkins, W. M., Chen, S. Y.-C., & Yoo, S. (2023). Quantum machine learning with differential privacy. Scientific Reports, 13(1). Scopus. https://doi.org/10.1038/s41598-022-24082-z
Wiedmann, M., Hölle, M., Periyasamy, M., Meyer, N., Ufrecht, C., Scherer, D. D., Plinge, A., & Mutschler, C. (2023). An Empirical Comparison of Optimizers for Quantum Machine Learning with SPSA-Based Gradients. In H. Muller, Y. Alexev, A. Delgado, & G. Byrd (Eds.), Proc. - IEEE Int. Conf. Quantum Comput. Eng., QCE (Vol. 1, pp. 450–456). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE57702.2023.00058
Xia, W., Zou, J., Qiu, X., Chen, F., Zhu, B., Li, C., Deng, D.-L., & Li, X. (2023). Configured quantum reservoir computing for multi-task machine learning. Science Bulletin, 68(20), 2321–2329. Scopus. https://doi.org/10.1016/j.scib.2023.08.040
Xiao, J., Dong, S., & Xia, L. (2023). Research on a Quantum Machine Learning Approach to Mismatched Filter Design. In J. Zhang (Ed.), Proc. - Int. Conf. Commun., Image Signal Process., CCISP (pp. 546–551). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/CCISP59915.2023.10355822
Ye, X., Yan, G., & Yan, J. (2023). VQNE: Variational Quantum Network Embedding with Application to Network Alignment. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 3105–3115. Scopus. https://doi.org/10.1145/3580305.3599542