Isolation and Characterization of Novel Antibiotic-Producing Actinobacteria from the Rhizosphere of Indonesian Mangrove Forests

Nike Triwahyuningsih (1), Chen Mei (2), Anna Schneider (3)
(1) Institut Pertanian INTAN Yogyakarta, Indonesia,
(2) Zhejiang University, China,
(3) Ludwig Maximilian University of Munich, Germany

Abstract

The rise of antimicrobial resistance is a global health crisis, demanding the urgent discovery of novel antibiotics. Indonesian mangrove forests, as a unique and underexplored ecosystem, represent a promising frontier for bioprospecting novel microorganisms. The plant rhizosphere, a zone of intense microbial activity, is particularly rich in actinobacteria, a phylum renowned for its prolific production of bioactive secondary metabolites. This research aimed to isolate and characterize novel antibiotic-producing actinobacteria from the rhizosphere of Indonesian mangrove plants. Rhizosphere soil samples were collected, and actinobacteria were isolated using selective media. All isolates were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans via the agar well diffusion method. The most potent isolate was subsequently characterized using morphological, biochemical, and 16S rRNA gene sequencing. From 72 distinct isolates, 15 displayed antimicrobial activity. One isolate, designated MGR-17, demonstrated exceptionally potent, broad-spectrum inhibition against all tested pathogens. Based on polyphasic taxonomy, MGR-17 was identified as a potentially novel species of the genus Streptomyces. In conclusion, the rhizosphere of Indonesian mangroves is a fertile source for discovering unique actinobacteria capable of producing novel antibiotics, and the discovery of Streptomyces sp. MGR-17 underscores this potential.

Full text article

Generated from XML file

References

Barreiro, C., Albillos, S. M., & Garcia-Estrada, C. (2024). Penicillium chrysogenum: Beyond the penicillin. In Advances in Applied Microbiology (Vol. 127, pp. 143–221). Elsevier. https://doi.org/10.1016/bs.aambs.2024.02.006

Behera, S., & Das, S. (2023). Environmental impacts of microplastic and role of plastisphere microbes in the biodegradation and upcycling of microplastic. Chemosphere, 334, 138928. https://doi.org/10.1016/j.chemosphere.2023.138928

Cai, F. M., Jiang, S., Daly, P., Bakhshi, M., Cartwright, K., & Druzhinina, I. S. (2025). Guidelines toward ecologically-informed bioprospecting for microbial plastic degradation. Biotechnology Advances, 82, 108590. https://doi.org/10.1016/j.biotechadv.2025.108590

Carroll, A. R., Copp, B. R., Grkovic, T., Keyzers, R. A., & Prinsep, M. R. (2024). Marine natural products. Natural Product Reports, 41(2), 162–207. https://doi.org/10.1039/D3NP00061C

Chen, H., Huang, D., Zhou, W., Deng, R., Yin, L., Xiao, R., Li, S., Li, F., & Lei, Y. (2024). Hotspots lurking underwater: Insights into the contamination characteristics, environmental fates and impacts on biogeochemical cycling of microplastics in freshwater sediments. Journal of Hazardous Materials, 476, 135132. https://doi.org/10.1016/j.jhazmat.2024.135132

Dai, Z., Yuan, R., Yang, X., Xi, H., Zhuo, M., & Wei, M. (2025). Salinity-responsive key endophytic bacteria in the propagules of Kandelia obovata enhance salt tolerance in rice. Journal of Integrative Agriculture, 24(5), 1738–1753. https://doi.org/10.1016/j.jia.2024.01.033

Das, P., Sarkar, B., & Mandal, S. (2023). Endophytic microbes: A potential source of bioactive metabolites with therapeutic values. In Endophytic Association: What, Why and How (pp. 435–457). Elsevier. https://doi.org/10.1016/B978-0-323-91245-7.00004-3

Dashti, Y., & Errington, J. (2024). Chemistry and biology of specialized metabolites produced by Actinomadura. Natural Product Reports, 41(3), 370–401. https://doi.org/10.1039/D3NP00047H

De Vasconcellos, S. P., Dos Santos Lima, L. M., Roswell, M. R., & Lacava, P. T. (2023). Tropical biomes as microbial sources for efficient biocatalysts to environmental purposes. In Microbial Inoculants (pp. 229–252). Elsevier. https://doi.org/10.1016/B978-0-323-99043-1.00003-7

Dhar, G. A., Chaudhuri, D., Mallick, B., & Ganguli, S. (2024). Insights into economically important endophytic and rhizospheric bacteria of true mangroves of Indian Sundarbans using high throughput mapping. In Biotechnology of Emerging Microbes (pp. 299–325). Elsevier. https://doi.org/10.1016/B978-0-443-15397-6.00015-2

Dutta, R., Santra, H. K., & Banerjee, D. (2024). Microbial plant growth promotors and their role in abiotic stress management. In Fungal Secondary Metabolites (pp. 317–335). Elsevier. https://doi.org/10.1016/B978-0-323-95241-5.00002-2

Farha, M. A., Tu, M. M., & Brown, E. D. (2025). Important challenges to finding new leads for new antibiotics. Current Opinion in Microbiology, 83, 102562. https://doi.org/10.1016/j.mib.2024.102562

Garg, D., Patel, N., Rawat, A., & Rosado, A. S. (2024). Cutting edge tools in the field of soil microbiology. Current Research in Microbial Sciences, 6, 100226. https://doi.org/10.1016/j.crmicr.2024.100226

Imchen, M., Moopantakath, J., Sreevalsan, A., & Kumavath, R. (2024). Metagenomic insights of microbial diversity in mangrove forest environment. In Applications of Metagenomics (pp. 253–269). Elsevier. https://doi.org/10.1016/B978-0-323-98394-5.00006-7

Izhar, S. K., Rizvi, S. F., Afaq, U., Fatima, F., & Siddiqui, S. (2024). Bioprospecting of Metabolites from Actinomycetes and theirApplications. Recent Patents on Biotechnology, 18(4), 273–287. https://doi.org/10.2174/0118722083269904231114154017

Kadaikunnan, S., Vijayaragavan, P., Rathi, M. A., Balamuralikrishnan, B., Alharbi, N. S., Gopalakrishnan, V. K., Purushothaman, S., & Sivanesan, R. (2024). Antibacterial and biofilm disruptive nonribosomal lipopeptides from Streptomyces parvulus against multidrug-resistant bacterial infections. Journal of Infection and Public Health, 17(3), 450–456. https://doi.org/10.1016/j.jiph.2024.01.001

Kandasamy, G. D., & Kathirvel, P. (2023). Insights into bacterial endophytic diversity and isolation with a focus on their potential applications –A review. Microbiological Research, 266, 127256. https://doi.org/10.1016/j.micres.2022.127256

Khurana, S., Ali, S., Srivastava, A. K., Singh, A., Agarwal, H., Chauhan, R., Joshi, N. C., Dufossé, L., & Chauhan, A. (2025). Bioremediation of microplastic pollution: A systematic review on mechanism, analytical methods, innovations, and omics approaches. Journal of Hazardous Materials Advances, 19, 100777. https://doi.org/10.1016/j.hazadv.2025.100777

Lebedeva, E., Panichev, A., Kiselev, K., Ryseva, Y., & Zaitseva, E. (2024). Taxonomic composition and physiological and biochemical properties of cultivated microorganisms isolated from kudurite rocks of the Primorsky Krai and the Republic of Altai (Russia). The Microbe, 5, 100214. https://doi.org/10.1016/j.microb.2024.100214

Mani, J., Kandasamy, D., Vendan, R. T., Sankarasubramanian, H., Mannu, J., & Nagachandrabose, S. (2024). Unlocking the potential of Streptomyces species as promising biological control agents against phytonematodes. Physiological and Molecular Plant Pathology, 134, 102465. https://doi.org/10.1016/j.pmpp.2024.102465

Mohamed, S. S., El Awady, M. E., Abdelhamid, S. A., Hamed, A. A., Salama, A. A. A., & Selim, M. S. (2023). Study of exopolysaccharide produced by Streptomyces rochie strain OF1 and its effect as ameliorative on osteoarthritis in rats via inhibiting TNF-?/COX2 pathway. Journal of Genetic Engineering and Biotechnology, 21(1), 12. https://doi.org/10.1186/s43141-023-00471-3

Muhilan, B. M., & Chattopadhyay, I. (2023). Endophytes and their bioactive metabolite’s role against various MDR microbes causing diseases in humans. In Endophytic Association: What, Why and How (pp. 135–158). Elsevier. https://doi.org/10.1016/B978-0-323-91245-7.00008-0

Negi, S., Kapoor, N., & Gambhir, L. (2025). Antioxidant and antiinflammatory endophytic fungal compounds for chronic diseases. In Navigating Endophytic Research for Next-Generation Therapeutics (pp. 175–200). Elsevier. https://doi.org/10.1016/B978-0-443-31484-1.00009-8

Oyedoh, O. P., Yang, W., Dhanasekaran, D., Santoyo, G., Glick, B. R., & Babalola, O. O. (2023). Rare rhizo-Actinomycetes: A new source of agroactive metabolites. Biotechnology Advances, 67, 108205. https://doi.org/10.1016/j.biotechadv.2023.108205

Pramanik, A., & Bhattacharyya, M. (2024). Microbial Community Structure of the Sundarbans Mangrove Ecosystem. In Microbial Diversity in the Genomic Era (pp. 73–88). Elsevier. https://doi.org/10.1016/B978-0-443-13320-6.00008-1

Sagar, K., & Priti, K. (2025). Metagenomics of river Ganga: A potential approach in bioremediation. In Development in Waste Water Treatment Research and Processes (pp. 649–676). Elsevier. https://doi.org/10.1016/B978-0-443-13615-3.00025-X

Sa?lam, N. G., Rachid, N. A., & Güngör, N. D. (2024). Secondary metabolites and biological compounds of actinomycetes and their applications. In Bacterial Secondary Metabolites (pp. 123–145). Elsevier. https://doi.org/10.1016/B978-0-323-95251-4.00013-2

Sagpariya, T., Srivastava, N., Katiyar, S., & Roy Choudhury, A. (2025). A comprehensive review on production, characterization, and applications of marine bacterial exopolysaccharides. International Journal of Biological Macromolecules, 331, 148391. https://doi.org/10.1016/j.ijbiomac.2025.148391

Sarma, A., Phukan, P., Phukan, P., Zorrilla, J. G., Masi, M., Cimmino, A., & Tayung, K. (2025). Fungal endophytes isolated from wild tomato produced metabolites with antifungal activity against phytopathogenic fungi. South African Journal of Botany, 186, 329–339. https://doi.org/10.1016/j.sajb.2025.09.030

Sarma, H., & Joshi, S. J. B. T. (2024). Index. In Biotechnology of Emerging Microbes (pp. 367–372). Elsevier. https://doi.org/10.1016/B978-0-443-15397-6.09999-X

Satya, S., Dashora, M., Palsania, P., Dar, M. A., & Kaushik, G. (2025). Unraveling the potential of soil microbes for simultaneous nutrient solubilization and pesticide degradation toward sustainable agriculture. Pedosphere, S1002016025000141. https://doi.org/10.1016/j.pedsph.2025.02.001

Sharma, S., Gupta, N., Kaur, S., Kumawat, K. C., & Chakkal, A. S. (2025). Soil microbial resources: Unlocking sustainable strategies for crop productivity and soil health. Current Research in Microbial Sciences, 9, 100468. https://doi.org/10.1016/j.crmicr.2025.100468

Simarmata, T., Hibatullah, F. H., Khumairah, F. H., Irwandhi, Ambarita, D. D. M., Nurbaity, A., Herdiyantoro, D., & Kamaluddin, N. N. (2025). Advancing climate-resilient rhizomicrobiome engineering for enhancing productivity and sustainability of strategic crop farming in Indonesia’s problematic soils. Environmental and Sustainability Indicators, 27, 100821. https://doi.org/10.1016/j.indic.2025.100821

Singh, J., & Sharma, V. B. T. R. (2025). Index. In Rhizomicrobiome in Sustainable Agriculture and Environment (pp. 541–563). Elsevier. https://doi.org/10.1016/B978-0-443-23691-4.20001-8

Singh, P., Dhanorkar, M., Patil, Y., & Rale, V. (2024). Agriculturally important functioning of beneficial microorganisms for healthy ecosystem maintenance. In The Potential of Microbes for a Circular Economy (pp. 149–183). Elsevier. https://doi.org/10.1016/B978-0-443-15924-4.00007-2

Siro, G., & Pipite, A. (2024). Mini-review on the antimicrobial potential of actinobacteria associated with seagrasses. Exploration of Drug Science, 117–125. https://doi.org/10.37349/eds.2024.00038

Tedsree, N., Yimyong, S., Tedsree, K., & Tanasupawat, S. (2025). Genomic insight of new Streptomyces strain DZ1-3 from rhizosphere soil with potent antifungal compounds. Rhizosphere, 35, 101157. https://doi.org/10.1016/j.rhisph.2025.101157

Teotia, N., & Chaudhary, D. R. (2024). Application of halophyte microbiome for development of salt tolerance in crops. In Improving Stress Resilience in Plants (pp. 143–164). Elsevier. https://doi.org/10.1016/B978-0-443-18927-2.00001-7

Trenozhnikova, L. P., Baimakhanova, G. B., Baimakhanova, B. B., Balgimbayeva, A. S., Daugaliyeva, S. T., Faizulina, E. R., Tatarkina, L. G., Spankulova, G. A., Berillo, D. A., & Beutler, J. A. (2024). Beyond traditional screening: Unveiling antibiotic potentials of actinomycetes in extreme environments. Heliyon, 10(22), e40371. https://doi.org/10.1016/j.heliyon.2024.e40371

Tripathi, A., Jaiswal, A., Kumar, D., Chavda, P., Pandit, R., Joshi, M., Blake, D. P., Tomley, F. M., Joshi, C. G., & Dubey, S. K. (2024). Antimicrobial resistance in plant endophytes associated with poultry-manure application revealed by selective culture and whole genome sequencing. Journal of Hazardous Materials, 480, 136166. https://doi.org/10.1016/j.jhazmat.2024.136166

Ullah, Z., Iqbal, J., Abbasi, B. A., Ijaz, S., Yaseen, T., Majeed, M., Iqbal, R., Murtaza, G., Ali, H., Kanwal, S., & Mahmood, T. (2025). Role of crop microbiomes in crop production under changing climate: Past, present, and future. In Phytomicrobiome and Stress Regulation (pp. 189–234). Elsevier. https://doi.org/10.1016/B978-0-443-33594-5.00016-0

Xu, C., Feng, Y., Li, H., Li, Y., Yao, Y., & Wang, J. (2024). Constructed wetlands for mariculture wastewater treatment: From systematic review to improvement measures and insights. Desalination, 579, 117505. https://doi.org/10.1016/j.desal.2024.117505

Xu, M., Selvaraj, G.-K., & Lu, H. (2023). Environmental sporobiota: Occurrence, dissemination, and risks. Science of The Total Environment, 869, 161809. https://doi.org/10.1016/j.scitotenv.2023.161809

Yang, G., Zhen, Z., Wu, W., Yang, C., Li, Q., Li, X., Yin, J., Zhong, X., Lin, Z., & Zhang, D. (2025). Mechanisms of Sulfamethoxazole biodegradation in mangrove rhizosphere by metagenomic and metabolic pathways. Environmental Technology & Innovation, 37, 103970. https://doi.org/10.1016/j.eti.2024.103970

Yang, S., Williams, S. J., Courtney, M., & Burchill, L. (2025). Warfare under the waves: A review of bacteria-derived algaecidal natural products. Natural Product Reports, 42(4), 681–719. https://doi.org/10.1039/D4NP00038B

Ye, J., Cen, J., Wu, J., Wen, Z., Chen, H., & Xu, J. (2024). A new tyrosine derivative isolated from an actinomycin D producing mangrove rhizosphere soil-derived Streptomyces parvulus A-30. Natural Product Research, 1–5. https://doi.org/10.1080/14786419.2024.2429114

Authors

Nike Triwahyuningsih
niketriwahyu19@gmail.com (Primary Contact)
Chen Mei
Anna Schneider
Triwahyuningsih, N., Mei, C., & Schneider, A. (2025). Isolation and Characterization of Novel Antibiotic-Producing Actinobacteria from the Rhizosphere of Indonesian Mangrove Forests. Research of Scientia Naturalis, 2(5), 283–299. https://doi.org/10.70177/scientia.v2i5.2567

Article Details