TARGETED GENE SILENCING OF KRAS ONCOGENES IN PANCREATIC CANCER USING SIRNA-LOADED GOLD NANOPARTICLES
Abstract
Pancreatic cancer, predominantly driven by mutations in the KRAS oncogene, remains one of the most lethal malignancies due to its resistance to conventional therapies. RNA interference (RNAi) using small interfering RNA (siRNA) presents a powerful strategy to silence oncogenes, but its clinical application is liited by the poor stability and inefficient delivery of naked siRNA. This study aimed to develop and validate a targeted nanodelivery system using gold nanoparticles (AuNPs) to efficiently deliver KRAS-specific siRNA and induce potent gene silencing in pancreatic cancer cells. A nanoconjugate was synthesized by attaching thiol-modified siRNA targeting the G12D-mutant KRAS gene to PEGylated gold nanoparticles. The physicochemical properties of the siRNA-AuNPs were characterized. The platform’s efficacy was evaluated in vitro using the PANC-1 human pancreatic cancer cell line. KRAS expression was quantified via qRT-PCR and Western blot, while cellular viability and apoptosis were assessed using MTT and flow cytometry assays, respectively. The synthesized siRNA-AuNPs exhibited excellent stability and were efficiently internalized by the cancer cells. This targeted delivery resulted in a significant downregulation of KRAS mRNA and protein expression by over 75% (p < 0.01) compared to controls. Consequently, this oncogene silencing led to a substantial inhibition of cancer cell proliferation and a marked increase in apoptosis. Gold nanoparticles serve as a highly effective and robust vector for the targeted delivery of siRNA. This nanomedicine platform successfully silences the critical KRAS oncogene, inducing cell death in pancreatic cancer cells and representing a promising new avenue for targeted cancer therapy.
Full text article
References
Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (n.d.). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Biomedical and Techno Nanomaterials, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453
Anthiya, S., Öztürk, S. C., Yanik, H., Tavukçuo?lu, E., ?ahin, A., Datta, D., Charissé, K., Álvarez, D. M., Loza-García, M. I., Calvo, A., Sulheim, E., Loevenich, S., Klinkenberg, G., Schmid, R., Manoharan, M., Esenda?li, G., & Alonso Fernández, M. J. (2023). Targeted siRNA lipid nanoparticles for the treatment of KRAS-mutant tumors. Journal of Controlled Release, 357, 67–83. Scopus. https://doi.org/10.1016/j.jconrel.2023.03.016
Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404
Avila, Y. I., Ha, A., Chandler, M. R., Santos, N. L., Kim, T., Newton, H. S., Dobrovolskaia, M. A., & Afonin, K. A. (2025). Reconfigurable Nucleic Acid Nanoparticles with Therapeutic RNAi Responses to Intracellular Disease Markers. Advanced Functional Materials. Scopus. https://doi.org/10.1002/adfm.202508122
Bathinapatla, A., Mulpuri, R., Azeez, A., & Kanchi, S. (2025). Role of nanomaterials in the development of nanobiosensors for infectious diseases (pp. 75–119). wiley; Scopus. https://doi.org/10.1002/9781394287697.ch3
Bian, X., Yu, X., Lu, S., Jia, L., Li, P., Yin, J., & Tan, S. (2025). Chitosan-based nanoarchitectures for siRNA delivery in cancer therapy: A review of pre-clinical and clinical importance. International Journal of Biological Macromolecules, 284, 137708. https://doi.org/10.1016/j.ijbiomac.2024.137708
Bianchi, A., Silva, I. C., Deshpande, N. U., Singh, S., Mehra, S., Garrido, V. T., Guo, X., Nivelo, L. A., Kolonias, D. S., Saigh, S. J., Wieder, E., Rafie, C. I., Dosch, A. R., Zhou, Z., Umland, O., Amirian, H., Ogobuiro, I. C., Zhang, J., Ban, Y., … Datta, J. (2023). Cell-Autonomous Cxcl1 Sustains Tolerogenic Circuitries and Stromal Inflammation via Neutrophil-Derived TNF in Pancreatic Cancer. Cancer Discovery, 13(6), 1428–1453. Scopus. https://doi.org/10.1158/2159-8290.CD-22-1046
Cortesi, A., Gandolfi, F., Arco, F., Di Chiaro, P. D., Valli, E., Polletti, S., Noberini, R., Gualdrini, F., Attanasio, S., Citron, F., Ho, I.-L., Shah, R., Yen, E.-Y., Spinella, M. C., Ronzoni, S., Rodighiero, S., Mitro, N., Bonaldi, T., Ghisletti, S., … Natoli, G. (2024). Activation of endogenous retroviruses and induction of viral mimicry by MEK1/2 inhibition in pancreatic cancer. Science Advances, 10(13). Scopus. https://doi.org/10.1126/sciadv.adk5386
Graves, A., Mukherjee, A., Yang, R., Mordant, A., Webb, T., Bryant, K., Herring, L., & Baldwin, A. S. (2025). ERK signaling promotes IKK? expression and oncogenic functions in pancreatic cancer cells in association with TBK1. Journal of Biological Chemistry, 301(9). Scopus. https://doi.org/10.1016/j.jbc.2025.110535
Gupta, T., & Murtaza, M. (2025). Advancing targeted therapies in pancreatic cancer: Leveraging molecular abberrations for therapeutic success. Progress in Biophysics and Molecular Biology, 196, 19–32. https://doi.org/10.1016/j.pbiomolbio.2025.02.003
Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442
He, Z., Zheng, D., Li, F., Chen, L., Wu, C., Zeng, Z., & Yu, C. (2025). TMOD3 accelerated resistance to immunotherapy in KRAS-mutated pancreatic cancer through promoting autophagy-dependent degradation of ASCL4. Drug Resistance Updates, 78. Scopus. https://doi.org/10.1016/j.drup.2024.101171
Huang, R., Du, H., Cheng, L., Zhang, P., Meng, F., & Zhong, Z. (2023). Targeted nanodelivery of siRNA against KRAS G12D inhibits pancreatic cancer. Acta Biomaterialia, 168, 529–539. Scopus. https://doi.org/10.1016/j.actbio.2023.07.008
Huang, R., Du, H., Cheng, L., Zhao, N., Zhang, P., Meng, F., & Zhong, Z. (2024). Targeted Delivery of siRNA-Gemcitabine Oligonucleotide Chimeras for High-Efficacy Synergistic Treatment of Pancreatic Cancer. Chemistry of Materials, 36(24), 11881–11891. Scopus. https://doi.org/10.1021/acs.chemmater.4c02335
Jeong, J., Hausmann, S., Dong, H., Szczepski, K., Flores, N. M., Garcia Gonzalez, A., Shi, L., Lu, X., Lempiäinen, J., Jakab, M., Zeng, L., Chasan, T., Bareke, E., Dong, R., Carlson, E., Padilla, R., Husmann, D., Thompson, J., Shipman, G. A., … Gozani, O. (2025). NSD2 inhibitors rewire chromatin to treat lung and pancreatic cancers. Nature. Scopus. https://doi.org/10.1038/s41586-025-09299-y
Kong, Y., Luo, Y., Zheng, S., Yang, J., Zhang, D., Zhao, Y., Zheng, H., An, M., Lin, Y., Ai, L., Diao, X., Lin, Q., Chen, C., & Chen, R. (2023). Mutant KRAS Mediates circARFGEF2 Biogenesis to Promote Lymphatic Metastasis of Pancreatic Ductal Adenocarcinoma. Cancer Research, 83(18), 3077–3094. Scopus. https://doi.org/10.1158/0008-5472.CAN-22-3997
Küçükekmekci, B., & Budak Yildiran, F. A. (2024). Investigation of the efficacy of siRNA-mediated KRAS gene silencing in pancreatic cancer therapy. PeerJ, 12(11). Scopus. https://doi.org/10.7717/peerj.18214
Lee, H., Bae, A.-N., Yang, H., Lee, J.-H., & Park, J. H. (2024). Modulation of PRC1 Promotes Anticancer Effects in Pancreatic Cancer. Cancers, 16(19). Scopus. https://doi.org/10.3390/cancers16193310
Lee, Y. S., Klomp, J. E., Stalnecker, C. A., Goodwin, C. M., Gao, Y., Droby, G. N., Vaziri, C., Bryant, K., Der, C. J., & Cox, A. D. (2023). VCP/p97, a pleiotropic protein regulator of the DNA damage response and proteostasis, is a potential therapeutic target in KRAS-mutant pancreatic cancer. Genes and Cancer, 14, 30–49. Scopus. https://doi.org/10.18632/genesandcancer.231
Lin, Y., Pu, S., Wang, J., Wan, Y., Wu, Z., Guo, Y., Feng, W., Ying, Y., Ma, S., Meng, X. J., Wang, W., Liu, L., Xia, Q., & Yang, X. (2024). Pancreatic STAT5 activation promotes Kras G12D -induced and inflammation-induced acinar-to-ductal metaplasia and pancreatic cancer. Gut, 73(11), 1831–1843. Scopus. https://doi.org/10.1136/gutjnl-2024-332225
Matsuda, A., Masuzawa, R., Takahashi, K., Takano, K., & Endo, T. (2025). MEK inhibitors and DA-Raf, a dominant-negative antagonist of the Ras–ERK pathway, prevent the migration and invasion of KRAS-mutant cancer cells. Cytoskeleton, 82(1–2), 32–44. Scopus. https://doi.org/10.1002/cm.21881
Misir, S., Aljabali, A. A. A., Yaman, S. Ö., Petrovi?, N., & Obeid, M. A. (2025). Small non-coding RNAs as therapeutic targets with delivery strategies in cancer treatment and their clinical applications. International Journal of Pharmaceutics, 685, 126231. https://doi.org/10.1016/j.ijpharm.2025.126231
Naghib, S. M., Ahmadi, B., & Mozafari, M. R. (2025). Smart Physicochemical-triggered Chitosan-based Nanogels for siRNA Delivery and Gene Therapy: A Focus on Emerging Strategies and Paradigms for Cancer Therapy. Current Medicinal Chemistry, 32(24), 4913–4946. https://doi.org/10.2174/0109298673286052240426044945
Nichetti, F., Silvestri, M., Agnelli, L., Franza, A., Pircher, C., Rota, S., Ambrosini, P., Fotia, G., Hüllein, J., Randon, G., Lajer, P., Perrone, F., Tamborini, E., Leoncini, G., Coppa, J., Busset, M. D. D., Pusceddu, S., Milione, M., Morano, F., … Niger, M. (2024). Molecular Characterization and Clinical Relevance of MGMT-Silenced Pancreatic Cancer. Cancer Medicine, 13(23). Scopus. https://doi.org/10.1002/cam4.70393
Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452
Okabe, J., Kodama, T., Sato, Y., Shigeno, S., Matsumae, T., Daiku, K., Sato, K., Yoshioka, T., Shigekawa, M., Higashiguchi, M., Kobayashi, S., Hikita, H., Tatsumi, T., Okamoto, T., Satoh, T., Eguchi, H., Akira, S., & Takehara, T. (2023). Regnase-1 downregulation promotes pancreatic cancer through myeloid-derived suppressor cell-mediated evasion of anticancer immunity. Journal of Experimental and Clinical Cancer Research, 42(1). Scopus. https://doi.org/10.1186/s13046-023-02831-w
Palanivel, C., Somers, T. N., Gabler, B. M., Chen, Y., Zeng, Y., Cox, J. L., Seshacharyulu, P., Dong, J., Yan, Y., Batra, S. K., & Ouellette, M. M. (2024). Rac1 GTPase Regulates the ?TrCP-Mediated Proteolysis of YAP Independently of the LATS1/2 Kinases. Cancers, 16(21). Scopus. https://doi.org/10.3390/cancers16213605
Pallathadka, H., Jabir, M., Rasool, K. H., Hanumanthaiah, M., Sharma, N., Pramanik, A., Rab, S. O., Jawad, S. F., Oghenemaro, E. F., & Mustafa, Y. F. (2025). siRNA-based therapy for overcoming drug resistance in human solid tumours: Molecular and immunological approaches. Human Immunology, 86(1), 111221. https://doi.org/10.1016/j.humimm.2024.111221
Pan, J., Liu, R., Lu, W., Peng, H., Yang, J., Zhang, Q., Yu, T., Huo, B., Wei, X., Liang, H., Zhou, L., Sun, Y., Hu, Y., Wen, S., Fu, J., Chiao, P. J., Xia, X., Liu, J., & Huang, P. (2025). SQLE-catalyzed squalene metabolism promotes mitochondrial biogenesis and tumor development in K-ras-driven cancer. Cancer Letters, 616. Scopus. https://doi.org/10.1016/j.canlet.2025.217586
Peng, L., Li, Y., Yao, S., Gaedcke, J., Baart, V. M., Sier, C. F. M., Neesse, A., Ellenrieder, V., Bohnenberger, H., Fuchs, F., Kitz, J., Strob?el, P., & Küffer, S. (2023). Urokinase-Type Plasminogen Activator Receptor (uPAR) Cooperates with Mutated KRAS in Regulating Cellular Plasticity and Gemcitabine Response in Pancreatic Adenocarcinomas. Cancers, 15(5). Scopus. https://doi.org/10.3390/cancers15051587
Ramalingam, P. S., & Arumugam, S. (2023). Computational design and validation of effective siRNAs to silence oncogenic KRAS. 3 Biotech, 13(11). Scopus. https://doi.org/10.1007/s13205-023-03767-w
Ray, P., Shukla, S., Zhang, Y., Donahue, K. L., Nancarrow, D. J., Kasturirangan, S., Shankar, S., Cuneo, K., Thomas, D., Gadgeel, S. M., Lawrence, T. S., Di Magliano, M. P., & Ray, D. (2025). SMURF2 Facilitates GAP17 Isoform 1 Membrane Displacement to Promote Mutant p53–KRAS Oncogenic Synergy. Molecular Cancer Research, 23(6), 530–541. Scopus. https://doi.org/10.1158/1541-7786.MCR-24-0701
Saha, S., Tandon, R., Sanku, J., Kumari, A., Shukla, R., & Srivastava, N. (2025). siRNA-based Therapeutics in Hormone-driven Cancers: Advancements and benefits over conventional treatments. International Journal of Pharmaceutics, 674, 125463. https://doi.org/10.1016/j.ijpharm.2025.125463
Sharma, R., Kumar, S., Ghosh, R., Komal, K., & Kumar, M. (2025). Gene Therapy: Transforming the Battle Against Pancreatic Cancer. Current Gene Therapy. Scopus. https://doi.org/10.2174/0115665232364196250131102330
Shen, C., Cui, T., Yang, L., Gui, L., Corrales-Guerrero, S., Nair, S., Li, H., Karasinska, J. M., Topham, J. T., Renouf, D. J., Schaeffer, D. F., Fernandez, A., Ping, X., Shen, B., Stark, J. M., & Williams, T. M. (2025). KRAS-induced STN1 (OBFC1) promotes proper CTC1–STN1–TEN1 complex-independent DNA double-strand break repair and cell cycle checkpoint maintenance in pancreatic cancer. Nucleic Acids Research, 53(18). Scopus. https://doi.org/10.1093/nar/gkaf983
Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406
Wolters-Eisfeld, G., Hackert, T., & Güngör, C. (2023). Unmasking metabolic dependencies in pancreatic cancer: Aberrant polyamine synthesis as a promising new therapeutic target. Signal Transduction and Targeted Therapy, 8(1). Scopus. https://doi.org/10.1038/s41392-023-01662-7
Xu, C., Lin, W., Zhang, Q., Ma, Y., Wang, X., Guo, A., Zhu, G., Zhou, Z., Song, W., Zhao, Z., Jiao, Y., Wang, X., & Du, C. (2024). MGST1 facilitates novel KRASG12D inhibitor resistance in KRASG12D-mutated pancreatic ductal adenocarcinoma by inhibiting ferroptosis. Molecular Medicine, 30(1). Scopus. https://doi.org/10.1186/s10020-024-00972-y
Yao, Z., Liu, T., Wang, J., Fu, Y., Zhao, J., Wang, X., Li, Y., Yang, X., & He, Z. (2025). Targeted delivery systems of siRNA based on ionizable lipid nanoparticles and cationic polymer vectors. Biotechnology Advances, 81, 108546. https://doi.org/10.1016/j.biotechadv.2025.108546
Zhang, W., Jiang, T., Zhang, H., Wei, F., Li, X., & Xie, K. (2025). RACK1 attenuates pancreatic tumorigenesis by suppressing acinar-to-ductal metaplasia through inflammatory signaling modulation. Cellular Oncology. Scopus. https://doi.org/10.1007/s13402-025-01084-3
Authors
Copyright (c) 2025 Shakib Ahmed, Zahidul Islam, Fatimah El Balqis

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.