BIO-FABRICATION OF A PRE-VASCULARIZED SKIN GRAFT USING A CO-AXIAL ELECTROSPINNING TECHNIQUE AND ENDOTHELIAL PROGENITOR CELLS
Abstract
Severe skin injuries caused by burns, chronic wounds, and trauma remain a major clinical challenge due to limited graft survival and delayed vascular integration following transplantation. Insufficient early vascularization frequently leads to ischemia and graft failure, restricting the effectiveness of conventional tissue-engineered skin substitutes. This study aims to develop a pre-vascularized skin graft using a co-axial electrospinning technique integrated with endothelial progenitor cells to enhance early vascular functionality and graft viability. An experimental biofabrication approach was employed, involving the fabrication of core–shell electrospun fibrous scaffolds, encapsulation of endothelial progenitor cells, and comprehensive structural and biological evaluation in vitro. Scaffold morphology, porosity, and integrity were characterized, followed by assessment of cell viability, proliferation, endothelial marker expression, and formation of vascular-like networks. The results demonstrated that co-axial electrospinning produced uniform, highly porous fibrous scaffolds capable of maintaining endothelial progenitor cell viability and supporting their angiogenic behavior. Encapsulated cells exhibited sustained proliferation and organized into capillary-like structures within the scaffold matrix, while scaffold architecture remained structurally stable. These findings indicate that the proposed biofabrication strategy enables intrinsic pre-vascularization of engineered skin grafts prior to implantation. In conclusion, co-axial electrospinning combined with endothelial progenitor cells represents a promising and scalable approach for generating pre-vascularized skin grafts, with significant potential to improve graft integration and clinical outcomes in regenerative skin therapy.
Full text article
References
Aizarna-Lopetegui, U., Bittinger, S. C., Álvarez, N., Henriksen-Lacey, M., & Jimenez de Aberasturi, D. (2025). Stimuli-responsive hybrid materials for 4D in vitro tissue models. Materials Today Bio, 33, 102035. https://doi.org/10.1016/j.mtbio.2025.102035
Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (n.d.). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Biomedical and Techno Nanomaterials, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453
Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404
Arora, S., Singh, S., Mittal, A., Desai, N., Khatri, D. K., Gugulothu, D., Lather, V., Pandita, D., & Vora, L. K. (2024). Spheroids in cancer research: Recent advances and opportunities. Journal of Drug Delivery Science and Technology, 100, 106033. https://doi.org/10.1016/j.jddst.2024.106033
Borah, R., Diez Clarke, D., Upadhyay, J., & Monaghan, M. G. (2025). From innovation to clinic: Emerging strategies harnessing electrically conductive polymers to enhance electrically stimulated peripheral nerve repair. Materials Today Bio, 30, 101415. https://doi.org/10.1016/j.mtbio.2024.101415
Chang, J., Li, B., & Wu, C. (Eds.). (2024). Chapter 2—Biological effect of materials structure on soft tissue regeneration. In Bioactive Materials for Soft Tissue Regeneration (pp. 153–260). Academic Press. https://doi.org/10.1016/B978-0-323-99998-4.00002-X
Chattopadhyay, D., & Das, B. (2025). Chapter 10—Tissue engineering applications. In D. Chattopadhyay & B. Das (Eds.), Design, Characterization and Fabrication of Polymer Scaffolds for Tissue Engineering (pp. 277–323). Elsevier Science Ltd. https://doi.org/10.1016/B978-0-323-96114-1.00009-4
Chen, S., Xie, Y., Ma, K., Wei, Z., Ran, X., Fu, X., Zhang, C., & Zhao, C. (2024). Electrospun nanofibrous membranes meet antibacterial nanomaterials: From preparation strategies to biomedical applications. Bioactive Materials, 42, 478–518. https://doi.org/10.1016/j.bioactmat.2024.09.003
Das, S., Valoor, R., Jegadeesan, J. T., & Basu, B. (2024). 3D bioprinted GelMA scaffolds for clinical applications: Promise and challenges. Bioprinting, 44, e00365. https://doi.org/10.1016/j.bprint.2024.e00365
Du, X., Jia, H., Chang, Y., Zhao, Y., & Song, J. (2024). Progress of organoid platform in cardiovascular research. Bioactive Materials, 40, 88–103. https://doi.org/10.1016/j.bioactmat.2024.05.043
Esmaeili, J., Jalise, S. Z., Pisani, S., Rochefort, G. Y., Ghobadinezhad, F., Mirzaei, Z., Mohammed, R. U. R., Fathi, M., Tebyani, A., & Nejad, Z. M. (2024). Development and characterization of Polycaprolactone/chitosan-based scaffolds for tissue engineering of various organs: A review. International Journal of Biological Macromolecules, 272, 132941. https://doi.org/10.1016/j.ijbiomac.2024.132941
Garg, A., Alfatease, A., Hani, U., Haider, N., Akbar, M. J., Talath, S., Angolkar, M., Paramshetti, S., Osmani, R. A. M., & Gundawar, R. (2024). Drug eluting protein and polysaccharides-based biofunctionalized fabric textiles- pioneering a new frontier in tissue engineering: An extensive review. International Journal of Biological Macromolecules, 268, 131605. https://doi.org/10.1016/j.ijbiomac.2024.131605
Golebiowska, A. A., Intravaia, J. T., Sathe, V. M., Kumbar, S. G., & Nukavarapu, S. P. (2024). Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioactive Materials, 32, 98–123. https://doi.org/10.1016/j.bioactmat.2023.09.017
Guo, Y., Wusiman, H., Zhao, L., James-ocloo, O. senanu, Han, X., Miao, Y., Nie, J., Wang, L., Du, J., Wei, Y., Lian, X., Ma, X., & Huang, D. (2025). Engineering endothelialized small-diameter artificial blood vessels: Strategies, advances and applications. Composites Part B: Engineering, 301, 112505. https://doi.org/10.1016/j.compositesb.2025.112505
Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442
Hsiung, N., Ju, Y., Yang, K., Yang, P., Zeng, W., Zhao, H., Zou, P., Ye, J., Yi, K., & Wang, X. (2025). Organoid-based tissue engineering for advanced tissue repair and reconstruction. Materials Today Bio, 33, 102093. https://doi.org/10.1016/j.mtbio.2025.102093
Lang, Z., Chen, T., Zhu, S., Wu, X., Wu, Y., Miao, X., Wang, Q., Zhao, L., Zhu, Z., & Xu, R. X. (2024). Construction of vascular grafts based on tissue-engineered scaffolds. Materials Today Bio, 29, 101336. https://doi.org/10.1016/j.mtbio.2024.101336
Lu, J., Gao, Y., Cao, C., Wang, H., Ruan, Y., Qin, K., Liu, H., Wang, Y., Yang, P., Liu, Y., Ma, Y., Yu, Z., Wang, Y., Zhong, Z., & Chang, F. (2025). 3D bioprinted scaffolds for osteochondral regeneration: Advancements and applications. Materials Today Bio, 32, 101834. https://doi.org/10.1016/j.mtbio.2025.101834
Mirshafiei, M., Rashedi, H., Yazdian, F., Rahdar, A., & Baino, F. (2024). Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives. Materials & Design, 240, 112853. https://doi.org/10.1016/j.matdes.2024.112853
Mozammal, H. M. D., & Lee, H. (2025). A comprehensive review in the advancements of bioprinting for tissue engineering using polysaccharide biomaterials and a future strategies. International Journal of Biological Macromolecules, 322, 146667. https://doi.org/10.1016/j.ijbiomac.2025.146667
Nathani, K., Damani, M., Mangrulkar, S., & Sawarkar, S. (2024). Polymeric nanofibers derived therapeutic approach for skeletal muscle regeneration: The promising future of muscle repair. Journal of Drug Delivery Science and Technology, 94, 105503. https://doi.org/10.1016/j.jddst.2024.105503
Nezhad, N. M., Rahimi, M., Gheybi, F., Kesharwani, P., Oroojalian, F., & Sahebkar, A. (2025). Navigating the evolution of ophthalmic drug delivery and ocular regenerative medicine from conventional to cutting-edge treatments. Applied Materials Today, 42, 102602. https://doi.org/10.1016/j.apmt.2025.102602
Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452
Omondi, O. B., Arroyan, Y. N., Onyango, B., Kong, L., Wang, G., & Ye, Z. (2024). Revolutionizing healthcare: Emerging frontiers in 3D bioprinting of tissues and organs. European Polymer Journal, 217, 113210. https://doi.org/10.1016/j.eurpolymj.2024.113210
Qureshi, M. A., Basree, Aziz, R., Azim, Y., & Ahmad, M. (2025). Polymeric hydrogels for bioprinting: A comprehensive review. Annals of 3D Printed Medicine, 18, 100198. https://doi.org/10.1016/j.stlm.2025.100198
Siddiqui, M. A. S., Rabbi, M. S., Ahmed, R. U., Alam, F., Hossain, M. A. M., Ahsan, S., & Miah, N. M. (2025). Bioinspired composite structures: A comprehensive review of natural materials, fabrication methods, and engineering applications. Composites Part C: Open Access, 17, 100578. https://doi.org/10.1016/j.jcomc.2025.100578
Tamo, A. K., Djouonkep, L. D. W., & Selabi, N. B. S. (2024). 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. International Journal of Biological Macromolecules, 270, 132123. https://doi.org/10.1016/j.ijbiomac.2024.132123
Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406
Thomas, D., & Wu, J. C. (2025). Integrative approaches in cardiac tissue engineering: Bridging cellular complexity to create accurate physiological models. iScience, 28(8), 113003. https://doi.org/10.1016/j.isci.2025.113003
Tripathi, D., Ramar, M., Lavudi, K., Sharma, S., Rajinikanth, P. S., & Pandey, P. (2025). The potential of fucoidans from ocean treasures to biomedical marvels: A review. International Journal of Biological Macromolecules, 333, 148979. https://doi.org/10.1016/j.ijbiomac.2025.148979
Wang, M., Hong, Y., Fu, X., & Sun, X. (2024). Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioactive Materials, 39, 492–520. https://doi.org/10.1016/j.bioactmat.2024.04.011
Xiang, H., Zhao, W., Jiang, K., He, J., Chen, L., Cui, W., & Li, Y. (2024). Progress in regulating inflammatory biomaterials for intervertebral disc regeneration. Bioactive Materials, 33, 506–531. https://doi.org/10.1016/j.bioactmat.2023.11.021
Xiao, Y., Cai, Z., Xing, Y., Fang, Z., Ye, L., Geng, X., Zhang, A., Gu, Y., & Feng, Z. (2024). Fabrication of small-diameter in situ tissue engineered vascular grafts with core/shell fibrous structure and a one-year evaluation via rat abdominal vessel replacement model. Biomaterials Advances, 165, 214018. https://doi.org/10.1016/j.bioadv.2024.214018
Yadav, S., Khan, J., & Yadav, A. (2024). Applications of Scaffolds in Tissue Engineering: Current Utilization and Future Prospective. Current Gene Therapy, 24(2), 94–109. https://doi.org/10.2174/0115665232262167231012102837
Ye, J., Ji, L., Liu, L., Zhou, K., Zhu, R., Sun, C., Lei, L., & Dai, M. (2025). Biomaterial-assisted neuralization strategies for tissue engineering applications. Materials Today Bio, 102713. https://doi.org/10.1016/j.mtbio.2025.102713
Zhang, X., Zhao, G., Ma, T., Simmons, C. A., & Santerre, J. P. (2024). A critical review on advances and challenges of bioprinted cardiac patches. Acta Biomaterialia, 189, 1–24. https://doi.org/10.1016/j.actbio.2024.09.056
Authors
Copyright (c) 2025 Shahinur Rahman, Shakib Ahmed, Zahidul Islam

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.