ARTIFICIAL INTELLIGENCE IN MEDICINE: A DEEP LEARNING CONVOLUTIONAL NEURAL NETWORK FOR PATHOLOGICAL IMAGE ANALYSIS AND CANCER GRADING
Abstract
The histopathological analysis of tissue slides is the gold standard for cancer diagnosis and grading. However, this process is labor-intensive, time-consuming, and prone to inter-observer variability, which can affect clinical outcomes. The advent of artificial intelligence (AI), particularly deep learning, presents a transformative opportunity to enhance diagnostic precision and efficiency in pathology. This study aimed to develop, train, and validate a deep learning convolutional neural network (CNN) for the automated analysis of pathological images to accurately classify malignancies and provide reliable cancer grading. A robust CNN model was trained on a comprehensive, curated dataset of thousands of annotated digital histopathology slides from multiple cancer types. The model’s performance was rigorously evaluated against the consensus diagnoses of expert pathologists using key metrics, including accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC-ROC). Our developed CNN model demonstrated exceptional performance, achieving an overall accuracy of 98.7% in distinguishing malignant from benign tissues. For cancer grading, the model yielded a Cohen’s Kappa score of 0.92, indicating almost perfect agreement with expert pathologists. The model also showed high robustness to variations in staining and image acquisition protocols. This research confirms that a deep learning CNN can function as a highly accurate and reliable tool for automated pathological image analysis and cancer grading. Integrating such AI systems into clinical workflows could significantly augment the capabilities of pathologists, leading to improved diagnostic consistency, reduced workload, and ultimately, better patient care.
Full text article
References
Ahmad, S., Zafar, I., Shafiq, S., Sehar, L., Khalil, H., Matloob, N., Hina, M., Muntaha, S. T., Khan, H., Khan, N. U., Rana, S., UNAR, A., Azmat, M., Shafiq, M., Bin Jardan, Y. A. B., Dauelbait, M., & Bourhia, M. (2025). Deep learning-based computational approach for predicting ncRNAs-disease associations in metaplastic breast cancer diagnosis. BMC Cancer, 25(1). Scopus. https://doi.org/10.1186/s12885-025-14113-z
Ali, M., Wu, T., Hu, H., & Mahmood, T. (2024). Breast tumor segmentation using neural cellular automata and shape guided segmentation in mammography images. PLOS ONE, 19(10). Scopus. https://doi.org/10.1371/journal.pone.0309421
Aljuaid, H., Adlan, H., Alkebsi, B., Alfurhood, B. S., Liotta, A., & Cavallaro, L. (2026). An experimental comparison of deep learning models for pneumonia classification from chest X-ray images. Biomedical Signal Processing and Control, 112, 108742. https://doi.org/10.1016/j.bspc.2025.108742
AL-Rahaawi, A. F. (2026). Meta-SAM: A novel deep learning architecture for oral disease classification. Biomedical Signal Processing and Control, 112, 108459. https://doi.org/10.1016/j.bspc.2025.108459
Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (n.d.). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Biomedical and Techno Nanomaterials, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453
Alzoubi, I., Xin, B., Bjerkvig, R., Wang, J., & Wang, X. (2026). An adaptive multi-graph fusion for tumor grading in pathology images. Pattern Recognition, 171, 112214. https://doi.org/10.1016/j.patcog.2025.112214
Ancheta, K., Psifidi, A., Yale, A. D., Le Calvez, S., & Williams, J. (2025). Deep-learning based morphological segmentation of canine diffuse large B-cell lymphoma. Frontiers in Veterinary Science, 12. Scopus. https://doi.org/10.3389/fvets.2025.1656976
Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404
Avazov, K., Umirzakova, S., Abdusalomov, A., Temirov, Z., Nasimov, R., Buriboev, A., Safarova Ulmasovna, L. U., Lee, C., & Jeon, H. S. (2025). Bridging the Gap Between Accuracy and Efficiency in AI-Based Breast Cancer Diagnosis from Histopathological Data. Cancers, 17(13). Scopus. https://doi.org/10.3390/cancers17132159
Bashir, R. M. S., Shephard, A. J., Mahmood, H., Azarmehr, N., Raza, S. E. A., Khurram, S. A., & Rajpoot, N. M. (2023). A digital score of peri-epithelial lymphocytic activity predicts malignant transformation in oral epithelial dysplasia. Journal of Pathology, 260(4), 431–442. Scopus. https://doi.org/10.1002/path.6094
Binzagr, F., Naseem, A., Farooq, M. U., & Alromema, N. (2025). TNFR-LSTM: A Deep Intelligent Model for Identification of Tumour Necroses Factor Receptor (TNFR) Activity. IET Systems Biology, 19(1). Scopus. https://doi.org/10.1049/syb2.70007
Cao, L., Wang, J., Zhang, Y., Rong, Z., Wang, M., Wang, L., Ji, J., Qian, Y., Zhang, L., Wu, H., Song, J., Liu, Z., Wang, W., Li, S., Wang, P., Xu, Z., Zhang, J., Zhao, L., Wang, H., … Hou, Y. (2023). E2EFP-MIL: End-to-end and high-generalizability weakly supervised deep convolutional network for lung cancer classification from whole slide image. Medical Image Analysis, 88. Scopus. https://doi.org/10.1016/j.media.2023.102837
Choi, J., Jeon, M., Choi, S. W., & Oh, T. (2026). A comparative study on deep learning architectures for a classification of photothrombotic damaged regions in histopathological rabbit brain images. Biomedical Signal Processing and Control, 111, 108354. https://doi.org/10.1016/j.bspc.2025.108354
Dinalankara, W., Ng, D. P., Marchionni, L., & Simonson, P. D. (2024). Comparison of three machine learning algorithms for classification of B-cell neoplasms using clinical flow cytometry data. Cytometry Part B - Clinical Cytometry, 106(4), 282–293. Scopus. https://doi.org/10.1002/cyto.b.22177
Dunn, N., Verma, N., & Dunn, W. (2026). Artificial Intelligence for Predictive Diagnostics, Prognosis, and Decision Support in MASLD, Hepatocellular Carcinoma, and Digital Pathology. Journal of Clinical and Experimental Hepatology, 16(1), 103184. https://doi.org/10.1016/j.jceh.2025.103184
Ekholm, A., Wang, Y., Vallon-Christersson, J., Boissin, C., & Rantalainen, M. (2024). Prediction of gene expression-based breast cancer proliferation scores from histopathology whole slide images using deep learning. BMC Cancer, 24(1). Scopus. https://doi.org/10.1186/s12885-024-13248-9
Folorunso, S. O., Abdulwarith, A., Adeniyi, A. E., Aworinde, H. O., & Awotunde, J. B. (2025). Oral cavity carcinoma detection using BAT algorithm-optimized machine learning models with transfer learning and random sampling. Computers in Biology and Medicine, 192. Scopus. https://doi.org/10.1016/j.compbiomed.2025.110250
Geijs, D. J., Hillen, L. M., Dooper, S., Winnepenninckx, V., Varra, V., Carr, D. R., Shahwan, K. T., Litjens, G., & Amir, A. (2025). Weakly Supervised Classification of Mohs Surgical Sections Using Artificial Intelligence. Modern Pathology, 38(2). Scopus. https://doi.org/10.1016/j.modpat.2024.100653
Ghode, P., Sharma, M., Maheshwari, R., & Jain, S. K. (2026). Theranostics and artificial intelligence as tools to detect various cancers. In Theranostics in Cancer Management (pp. 359–378). Elsevier. https://doi.org/10.1016/B978-0-443-34199-1.00015-6
Gladis Pushparathi, V. P. G., Shajeena, J., Kamalam, T., & Revathi, M. (2025). Early Colon Cancer Prediction from Histopathological Images Using Enhanced Deep Learning with Confidence Scoring. Cancer Investigation, 43(3), 205–223. Scopus. https://doi.org/10.1080/07357907.2025.2483302
Hameed, M., Raja, M. A. Z., Zameer, A., Dar, H. S., Saleh Alluhaidan, A. S., & Aziz, R. (2025). Acute myeloid leukemia classification using ReLViT and detection with YOLO enhanced by adversarial networks on bone marrow images. Scientific Reports, 15(1). Scopus. https://doi.org/10.1038/s41598-025-17891-5
Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442
Islam Sumon, R., Bhattacharjee, S., Hwang, Y.-B., Rahman, H., Kim, H.-C., Ryu, W.-S., Kim, D. M., Cho, N. H., & Choi, H.-K. (2023). Densely Convolutional Spatial Attention Network for nuclei segmentation of histological images for computational pathology. Frontiers in Oncology, 13. Scopus. https://doi.org/10.3389/fonc.2023.1009681
Khan, H. U., Raza, B., Shah, M. H., Usama, S. M., Tiwari, P., & Band, S. S. (2023). SMDetector: Small mitotic detector in histopathology images using faster R-CNN with dilated convolutions in backbone model. Biomedical Signal Processing and Control, 81. Scopus. https://doi.org/10.1016/j.bspc.2022.104414
Kumar, S., Singh, J., Ravi, V., Singh, P., Al Mazroa, A., Manoj, M., & Gupta, I. (2024). Utilizing Multi-layer Perceptron for Esophageal Cancer Classification Through Machine Learning Methods. Open Public Health Journal, 17. Scopus. https://doi.org/10.2174/0118749445335423240808062700
Luo, Y., Tian, Q., Xu, L., Zeng, D., Zhang, H., Zeng, T., Tang, H., Wang, C., & Chen, Y. (2025). Development and interpretation of a pathomics-based model for the prediction of immune therapy response in colorectal cancer. Methods, 241, 128–139. Scopus. https://doi.org/10.1016/j.ymeth.2025.05.012
Lv, E., Kang, X., Wen, P., Tian, J., & Zhang, M. (2024). A novel benign and malignant classification model for lung nodules based on multi-scale interleaved fusion integrated network. Scientific Reports, 14(1). Scopus. https://doi.org/10.1038/s41598-024-79058-y
Manescu, P., Geradts, J., & Fernandez-Reyes, D. (2025). Computational Pathology Detection of Hypoxia-Induced Morphologic Changes in Breast Cancer. American Journal of Pathology, 195(4), 663–670. Scopus. https://doi.org/10.1016/j.ajpath.2024.10.023
Maqsood, S., & Damasevicius, R. (2023). Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare. Neural Networks, 160, 238–258. Scopus. https://doi.org/10.1016/j.neunet.2023.01.022
Marrón-Esquivel, J. M., Durán-López, L., Linares-Barranco, A., & Dominguez-Morales, J. P. (2023). A comparative study of the inter-observer variability on Gleason grading against Deep Learning-based approaches for prostate cancer. Computers in Biology and Medicine, 159. Scopus. https://doi.org/10.1016/j.compbiomed.2023.106856
Merabet, A., Saighi, A., Saad, H., Abderraouf Ferradji, M., Laboudi, Z., Almaktoom, A. T., Mousavirad, S. J., Elbatal, I., & Wagdy Mohamed, A. (2026). AI for colon cancer: A focus on classification, detection, and predictive modeling. International Journal of Medical Informatics, 206, 106115. https://doi.org/10.1016/j.ijmedinf.2025.106115
Nasrallah, M. P., Zhao, J., Tsai, C. C., Meredith, D., Marostica, E., Ligon, K. L., Golden, J. A., & Yu, K.-H. (2023). Machine learning for cryosection pathology predicts the 2021 WHO classification of glioma. Med, 4(8), 526-540.e4. Scopus. https://doi.org/10.1016/j.medj.2023.06.002
Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452
Park, H. S., Chong, Y., Lee, Y., Yim, K., Seo, K. J., Hwang, G., Kim, D., Gong, G., Cho, N. H., Yoo, C. W., & Choi, H. J. (2023). Deep Learning-Based Computational Cytopathologic Diagnosis of Metastatic Breast Carcinoma in Pleural Fluid. Cells, 12(14). Scopus. https://doi.org/10.3390/cells12141847
Peng, N., Song, S. J., Hui, V. W.-K., Lai, J. C.-T., Wong, G. L.-H., Wong, V. W.-S., & Yip, T. C.-F. (2026). Foundations of Artificial Intelligence in Hepatology: What a Clinician Needs to Know. Journal of Clinical and Experimental Hepatology, 16(1), 103183. https://doi.org/10.1016/j.jceh.2025.103183
Shahadat, N., Lama, R., & Nguyen, A. (2024). Lung and Colon Cancer Detection Using a Deep AI Model †. Cancers, 16(22). Scopus. https://doi.org/10.3390/cancers16223879
Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406
Trahearn, N., Sakr, C., Banerjee, A., Lee, S. H., Baker, A.-M., Kocher, H. M., Angerilli, V., Morano, F., Bergamo, F., Maddalena, G., Intini, R., Cremolini, C., Caravagna, G., Graham, T., Pietrantonio, F., Lonardi, S., Fassan, M., & Sottoriva, A. (2025). Computational pathology applied to clinical colorectal cancer cohorts identifies immune and endothelial cell spatial patterns predictive of outcome. Journal of Pathology, 265(2), 198–210. Scopus. https://doi.org/10.1002/path.6378
van Dieren, L., Amar, J. Z., Geurs, N., Quisenaerts, T., Gillet, C., Delforge, B., de Crane D’Heysselaer, L., Thiessen Ef, F., Cetrulo, C. L., & Lellouch, A. G. (2023). Unveiling the power of convolutional neural networks in melanoma diagnosis. European Journal of Dermatology, 33(5), 495–505. Scopus. https://doi.org/10.1684/ejd.2023.4559
Yang, Z., Wang, X., Xiang, J., Zhang, J., Yang, S., Wang, X., Yang, W., Li, Z., Han, X., & Liu, Y. (2023). The devil is in the details: A small-lesion sensitive weakly supervised learning framework for prostate cancer detection and grading. Virchows Archiv, 482(3), 525–538. Scopus. https://doi.org/10.1007/s00428-023-03502-z
Authors
Copyright (c) 2025 James Smith, Oliver Harris, Dito Anurogo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.