A 3D-PRINTED, GRAPHENE-REINFORCED HYDROGEL SCAFFOLD FOR ENHANCED OSTEOGENIC DIFFERENTIATION OF MESENCHYMAL STEM CELLS
Abstract
Bone tissue engineering requires scaffolds that replicate the mechanical stiffness and electroactive properties of native bone, features that conventional hydrogels lack. This study aimed to design, fabricate, and validate a 3D-printed graphene-reinforced hydrogel scaffold that enhances osteogenic differentiation of human mesenchymal stem cells (hMSCs) via combined mechanical and electrical stimulation. A composite bio-ink was developed by incorporating graphene nanoparticles (0, 0.1, 0.2, and 0.5% w/v) into a biocompatible hydrogel matrix, optimized for extrusion-based 3D printing. Scaffolds with a controlled pore size of 300 ?m were fabricated and analyzed for compressive strength, degradation kinetics, and electrical conductivity using a four-point probe. hMSCs were seeded onto the scaffolds and cultured under osteogenic conditions for 28 days. Osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity (day 14), qPCR for RUNX2 and osteocalcin (OCN) (day 21), and Alizarin Red S staining for mineralization (day 28). Data were analyzed using ANOVA and regression modeling. The 0.2% w/v graphene-reinforced scaffolds showed optimal performance, with compressive strength of 35.0 MPa and electrical conductivity of 0.15 S/m, significantly higher than pure hydrogel controls. hMSCs cultured on these scaffolds exhibited increased ALP activity, upregulation of RUNX2 and OCN, and enhanced mineralization. At 0.5% w/v graphene, excessive viscosity hindered printability and reduced cell viability. Overall, the 3D-printed graphene-reinforced hydrogel scaffold at 0.2% w/v creates a synergistic electromechanical microenvironment, robustly promoting hMSC osteogenesis, and offers a scalable platform for next-generation bone tissue engineering.
Full text article
References
Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (n.d.). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Biomedical and Techno Nanomaterials, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453
Aminnezhad, S., Hama, N. H., Hasan, A. H., Bagheri, F., & Alavi, M. (2025). Applications of biocompatible polymeric nanomaterials in three-dimensional (3D) scaffolds: Bacterial infections and diabetes. International Journal of Biological Macromolecules, 301, 140331. https://doi.org/10.1016/j.ijbiomac.2025.140331
Arman, S. A., Wang, Y., & Zou, G. (2023). Threeyasa Group Banyuwangi Company Profile Design. Biomedical and Techno Nanomaterials, 1(1), 14–24. https://doi.org/10.55849/jsca.v1i1.404
B, Balaji., & S, R. E. (2025). A Comprehensive Review on the superior properties of synthetic Bioresorbable Magnesium Phosphate ceramic scaffolds and its combination for bone regeneration applications using Additive Manufacturing. Results in Engineering, 108344. https://doi.org/10.1016/j.rineng.2025.108344
Bao, C., Qiao, Z., & Jin, Y. (2025). Fabrication of mechanically tunable scaffolds by melt electrowriting: Process strategies and multi-scale structural design. Materials & Design, 258, 114656. https://doi.org/10.1016/j.matdes.2025.114656
Bektas, C. K., Luo, J., Conley, B., Le, K.-P. N., & Lee, K.-B. (2025). 3D bioprinting approaches for enhancing stem cell-based neural tissue regeneration. Acta Biomaterialia, 193, 20–48. https://doi.org/10.1016/j.actbio.2025.01.006
Bharadwaj, T., Chrungoo, S., Jenamani, A. N. D. S., Pradhan, S. S., & Verma, D. (2025). Osteogenic evaluation of BM-MSCs in thermosensitive chitosan bioinks incorporating gelatin–carrageenan polyelectrolyte complex SNAs and nanoparticles. Carbohydrate Polymers, 124791. https://doi.org/10.1016/j.carbpol.2025.124791
Das, S., Valoor, R., Jegadeesan, J. T., & Basu, B. (2024). 3D bioprinted GelMA scaffolds for clinical applications: Promise and challenges. Bioprinting, 44, e00365. https://doi.org/10.1016/j.bprint.2024.e00365
Dutta, S. D., Hexiu, J., Moniruzzaman, M., Patil, T. V., Acharya, R., Kim, J. S., & Lim, K.-T. (2025). Tailoring osteoimmunity and hemostasis using 3D-Printed nano-photocatalytic bactericidal scaffold for augmented bone regeneration. Biomaterials, 316, 122991. https://doi.org/10.1016/j.biomaterials.2024.122991
Fendi, F., Abdullah, B., Suryani, S., Usman, A. N., & Tahir, D. (2024). Development and application of hydroxyapatite-based scaffolds for bone tissue regeneration: A systematic literature review. Bone, 183, 117075. https://doi.org/10.1016/j.bone.2024.117075
Fernandes, P. D., Silva, F. C., Magalhães, F. D., Pereira, R. F., Santos, S. G., & Pinto, A. M. (2025). 3D printing of nanoparticle-containing scaffolds for cancer phototherapy, magnetic hyperthermia therapy, and tissue regeneration. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2025.11.043
Gogoi, D., Kumar, M., & Singh, J. (2024). A comprehensive review on hydrogel-based bio-ink development for tissue engineering scaffolds using 3D printing. Annals of 3D Printed Medicine, 15, 100159. https://doi.org/10.1016/j.stlm.2024.100159
Górnicki, T., Józkowiak, M., Data, K., Domaga?a, D., Niebora, J., Okowi?ska, E., K?opot, A., Kulus, M., Bryja, A., Wo?niak, S., Kami?ski, A., Chmielewski, P., Górska, A., Party?ska, A., Wysocka, T., Spaczy?ski, M., Piotrowska-Kempisty, H., Dzi?giel, P., Mozdziak, P., … Kempisty, B. (2025). Wharton’s jelly mesenchymal stem cells (WJ-MSCs), a “Holy Grail” in tissue bioengineering and reconstructive medicine. Biomedicine & Pharmacotherapy, 192, 118570. https://doi.org/10.1016/j.biopha.2025.118570
Gupta, P., Sarkar, S., Karmakar, S., Jana, S., Nandi, G., & Manna, S. (2025). Biosensory implications of scaffolds: Designing, integration and biomedical applications. Journal of Pharmaceutical and Biomedical Analysis Open, 6, 100095. https://doi.org/10.1016/j.jpbao.2025.100095
Hasanah, I. U., Tabroni, I., Brunel, B., & Alan, M. (2023). Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years. Biomedical and Techno Nanomaterials, 1(1), 1–13. https://doi.org/10.55849/jsca.v1i1.442
Li, B., Song, S., Zhou, Y., Chen, X., Zhang, Z., Liu, X., & Zhang, R. (2025). Biopolymer hydrogels in biomedicine: Bridging chemistry, biology, and clinical translation. International Journal of Biological Macromolecules, 318, 145048. https://doi.org/10.1016/j.ijbiomac.2025.145048
Li, L., Shi, G., Wu, Z., Cai, Z., Wang, J., Hao, Z., Chen, R., Piao, Z., Chen, C., & Li, J. (2025). 3D printing of scaffolds for articular cartilage/osteochondral regeneration: Design, performance, and applications. Chemical Engineering Journal, 519, 165273. https://doi.org/10.1016/j.cej.2025.165273
Liu, Y.-Y., & Echeverry-Rendón, M. (2025). 3D-printed biodegradable polymer scaffolds for tissue engineering: An overview, current stage and future perspectives. Next Materials, 8, 100647. https://doi.org/10.1016/j.nxmate.2025.100647
Lu, C., Tang, C., Li, G., Ren, K., Yin, J., & Yan, S. (2025). Fiber composite hydrogels and their applications in tissue regeneration. Acta Biomaterialia, 208, 146–167. https://doi.org/10.1016/j.actbio.2025.11.003
Ma, H., Su, X., Liang, J., Liu, L., Sun, J., Tong, J., Lu, J., Zhang, Y., Lei, B., & Zhao, H. (2025). Bioactive protein/polysaccharide hydrogel functionalized bone implants surface for enhanced osteogenesis. International Journal of Biological Macromolecules, 317, 144626. https://doi.org/10.1016/j.ijbiomac.2025.144626
Ma, J., Feng, J., Zhang, X., Zou, Z., Li, Q., Lei, L., Dong, Z.-Z., & Lin, Z. (2025). Beyond static scaffolds: Glucose-responsive hydrogels as dynamic intelligent platform for tissue engineering. Materials & Design, 258, 114635. https://doi.org/10.1016/j.matdes.2025.114635
Mohiuddin, Md., Rahman, Md. M., Uddin, Md. N., Hasan, R., & Rahman, I. (2025). Biodegradable graphene nanocomposites as functional biomaterials: A review of their role in controlled drug delivery and tissue engineering. RSC Advances, 15(53), 45387–45416. https://doi.org/10.1039/d5ra06280b
Negi, A., Goswami, K., Diwan, H., Agrawal, G., & Murab, S. (2025). Designing osteogenic interfaces on 3D-Printed thermoplastic bone scaffolds. Materials Today Chemistry, 45, 102635. https://doi.org/10.1016/j.mtchem.2025.102635
Nopiyanti, H., Tabroni, I., Barroso, U., & Intes, A. (2023). Product Development of Unique Clothing Learning Media to Stimulate Fine Motor Skills of 4-5 Years Old Children. Biomedical and Techno Nanomaterials, 1(1), 48–61. https://doi.org/10.55849/jsca.v1i1.452
Pahlevanzadeh, F., Emadi, R., Kharaziha, M., Poursamar, S. A., Nejatidanesh, F., Emadi, H., Aslani, R., Moroni, L., & Setayeshmehr, M. (2024). Amorphous magnesium phosphate-graphene oxide nano particles laden 3D-printed chitosan scaffolds with enhanced osteogenic potential and antibacterial properties. Biomaterials Advances, 158, 213760. https://doi.org/10.1016/j.bioadv.2024.213760
Pavithra, B., Singh, P., Kumar, V. R., Durairaj, S., & Hassan, S. (2025). Advances in polymeric nanoparticles and hydrogels in 3D bioprinting: Enhancing bioinks for tissue engineering and regenerative medicine. Bioprinting, 51, e00438. https://doi.org/10.1016/j.bprint.2025.e00438
Philip, M., Roby, S. A., Ramadoss, R., Aljumah, G. A., & Gopalakrishna, V. B. (2025). A comparative pre-clinical analysis of nanocellulose hydrogels and synthetic nanocomposite hydrogels on bone and cartilage regeneration in critical size defects-A systematic review. International Journal of Biological Macromolecules, 333, 148777. https://doi.org/10.1016/j.ijbiomac.2025.148777
Sánchez-Cepeda, A., Pazos, M. C., Leonardo, P.-A., Ingrid, S.-C., Correa-Araujo, L. S., María de Lourdes, C. G., & Vera-Graziano, R. (2024). Functionalization of 3D printed poly(lactic acid)/graphene oxide/?-tricalcium phosphate (PLA/GO/TCP) scaffolds for bone tissue regeneration application. RSC Advances, 14(54), 39804–39819. https://doi.org/10.1039/d4ra05889e
Sonwane, S., Bonde, S., Bonde, C., & Chandarana, C. (2025). Advances in gelatin-based scaffolds for tissue engineering applications: A review. Journal of Drug Delivery Science and Technology, 107, 106789. https://doi.org/10.1016/j.jddst.2025.106789
Tamo, A. K., Djouonkep, L. D. W., & Selabi, N. B. S. (2024). 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. International Journal of Biological Macromolecules, 270, 132123. https://doi.org/10.1016/j.ijbiomac.2024.132123
Teresia, V., Jie, L., & Jixiong, C. (202 C.E.). Interactive Learning Media Application For The Introduction Of Human Needs In Children Aged. Biomedical and Techno Nanomaterials, 1(1), 25–36. https://doi.org/10.55849/jsca.v1i1.406
Varaprasad, K., & Jayaramudu, T. (2025). A review of smart alginate-based biomaterials: Innovations and challenges in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 149518. https://doi.org/10.1016/j.ijbiomac.2025.149518
Wang, L., Chen, X., Shi, S., Yang, X., Chen, H., & Xiao, J. (2025). Advanced collagen-based scaffolds for cartilage and osteochondral regeneration: A review. International Journal of Biological Macromolecules, 311, 143992. https://doi.org/10.1016/j.ijbiomac.2025.143992
Zaghian, M., Varshosaz, J., Rostami, M., & Mirian, M. (2024). A forsterite-reinforced polypropylene fumarate/methoxy polyethylene glycol-hydrogel enriched with flavonoid nanoparticles enhances osteoconductivity. Materials Advances, 5(10), 4324–4344. https://doi.org/10.1039/d3ma00826f
Zhang, L., Yuan, X., Song, R., Yuan, Z., Zhao, Y., & Zhang, Y. (2025). Engineered 3D mesenchymal stem cell aggregates with multifunctional prowess for bone regeneration: Current status and future prospects. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2025.04.008
Authors
Copyright (c) 2025 Dito Anurogo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.