VEGETATION AND TEMPERATURE AS DETERMINANTS IN THE EGG-LAYING BEHAVIOR OF HAWKSBILL TURTLES (ERETMOCHELYS IMBRICATA) AND LOGGERHEAD TURTLES (CARETTA CARETTA)
Abstract
Vegetation and temperature are biophysical parameters that affect sea turtle nesting behavior. Coastal vegetation is essential to the nesting behavior of Loggerhead sea turtles. In contrast to Hawksbill sea turtles, Loggerhead sea turtles preferentially select sandy beaches for nesting. The study aimed to measure the impact of vegetation and temperature on sea turtle nesting behaviors and to offer detailed insights on adaptation and enhanced conservation techniques to save sea turtles from environmental changes. The study was performed on Popaya Island, within the Nature Reserve of Mas Popaya Raja Island, North Gorontalo, from January to March 2023. Identification of population and sample using the purposive sampling method for all turtles observed throughout the observation phase. The findings indicated that Hawksbill turtles (Eretmochelys imbricata) favored nesting in locations characterized by greater plant diversity and density, averaging 195 eggs per nest. Loggerhead turtles (Caretta caretta) deposited a comparatively lower number of eggs (88 eggs) than at other locations (96 - 108 eggs). Some eggs were found in places with no surrounding vegetation. The nesting activity of loggerheads in non-vegetated regions may have been affected by the shallowness of the holes and their comparatively broader width. The sand surface temperature in areas with dense flora and biodiversity decreases, impacting egg-laying activity as one moves further from the vegetation's border.
Full text article
References
Andrade, H. M., Fushita, A. T., & Vasconcelos, V. V. (2025). Spatial modeling of urban expansion for the territorial management of Ilha Comprida – Brazil. Land Use Policy, 159, 107805. https://doi.org/10.1016/j.landusepol.2025.107805
Arkema, K. K., Cunningham, S. K., Delevaux, J. M. S., Celina, B. G., Klain, S., Lamb, J. B., Nelson, L. K., Scyphers, S., Stewart, H., & Sutton-Grier, A. (2024). 7.10—Beneficiaries, Equity, and Trade-Offs in Estuarine and Coastal Ecosystem Services. In D. Baird & M. Elliott (Eds.), Treatise on Estuarine and Coastal Science (Second Edition) (pp. 208–237). Academic Press. https://doi.org/10.1016/B978-0-323-90798-9.00106-2
Bauer, M., Schneider, L., & Huber, A. (2024). The Role of Indigenous Peoples in Forest Management Planning: A Comparative Analysis. Selvicoltura Asean, 1(6), 293–303. https://doi.org/10.70177/jsa.v1i6.1675
Beaumont, N. J., & Glavovic, B. C. (2024). 7.1—Introduction to the Values and Governance of Estuaries and Coasts. In D. Baird & M. Elliott (Eds.), Treatise on Estuarine and Coastal Science (Second Edition) (pp. 1–13). Academic Press. https://doi.org/10.1016/B978-0-323-90798-9.00128-1
Benjamin, J., Ayesiga, P., Gomes, M., Dutton, C., Schoelynck, J., & Subalusky, A. (2025). Chapter 14—Land–water connections from river source to mouth. In T. Dalu & F. O. Masese (Eds.), Afrotropical Streams and Rivers (pp. 349–374). Elsevier. https://doi.org/10.1016/B978-0-443-23898-7.00014-2
Bilkovic, D. M., Scheld, A. M., Isdell, R., Mason, P., Stafford, S., Mitchell, M., Gonzalez-Dorantes, C., Chambers, R., Leu, M., Musick, S., Gregory, S., Hendricks, J., Dada, O., & Benson, G. (2025). Valuing present and future benefits provided by coastal wetlands and living shorelines. Nature-Based Solutions, 8, 100243. https://doi.org/10.1016/j.nbsj.2025.100243
Bischof, B. G. (2025). Chapter 6—Making marine geographies: Foundations, approaches, and knowledge organization. In B. G. Bischof (Ed.), Marine Geography (pp. 173–195). Elsevier. https://doi.org/10.1016/B978-0-443-29156-2.00001-3
Biswas, S., Mahato, S., & Dhar, J. (2025). A review on microbial bioconvection in porous media: Mechanisms, bloom formation, and technological Frontiers. International Communications in Heat and Mass Transfer, 167, 109394. https://doi.org/10.1016/j.icheatmasstransfer.2025.109394
Boumans, R., Kelly-Fair, M., Gopal, S., Pitts, J., & Oliveira, B. (2024). 7.11—Dynamic Integrated Modeling for Coastal and Estuarine Systems. In D. Baird & M. Elliott (Eds.), Treatise on Estuarine and Coastal Science (Second Edition) (pp. 238–266). Academic Press. https://doi.org/10.1016/B978-0-323-90798-9.00060-3
Bozzeda, F., Celentano, E., Ortega, L., & Defeo, O. (2025). A 40-year assessment of a harvested sandy beach clam population: Environmental and economic drivers of a regime shift. Ocean & Coastal Management, 263, 107613. https://doi.org/10.1016/j.ocecoaman.2025.107613
Deb, D., Uddin, M. M., Mahbub-E-Kibria, A. S. Md., Kumar Das, M., & Hasan, M. (2024). Coastal vulnerability assessment to multi hazards in the exposed coast of Southeastern Coastal Region of Bangladesh. Regional Studies in Marine Science, 73, 103484. https://doi.org/10.1016/j.rsma.2024.103484
Defeo, O., & McLachlan, A. (2025). Chapter 15—Human Impacts. In O. Defeo & A. McLachlan (Eds.), The Ecology of Sandy Shores (Fourth Edition) (pp. 491–560). Academic Press. https://doi.org/10.1016/B978-0-443-21754-8.00005-1
Deng, X., Du, H., Li, Z., Chen, H., Ma, N., Song, Y., Luo, L., & Duan, Q. (2024). Sand fixation and human activities on the Qinghai-Tibet Plateau for ecological conservation and sustainable development. Science of The Total Environment, 912, 169220. https://doi.org/10.1016/j.scitotenv.2023.169220
Dupont, R., Semeraro, A., Stechele, B., Sterckx, T., Van Hoey, G., Vandorpe, T., & Van der Biest, K. (2025). Variation in ecosystem services within biogenic reefs: The role of reef-building species under distinct hydrodynamic conditions. Journal of Sea Research, 102650. https://doi.org/10.1016/j.seares.2025.102650
Edworthy, C., & Tagliarolo, M. (2025). Acidification in Aquatic Systems. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-443-21964-1.00095-1
Fariq, A., Nizam, Z., & Idris, H. (2024). Biodiversity Conservation in the Anthropocene: Challenges and Solutions. Selvicoltura Asean, 1(3), 137–146. https://doi.org/10.70177/jsa.v1i3.1660
Ghermandi, A., & Sinclair, M. (2024). 7.7—Monetary Values of the Non-Market Benefits of Estuarine and Coastal Cultural Ecosystem Services. In D. Baird & M. Elliott (Eds.), Treatise on Estuarine and Coastal Science (Second Edition) (pp. 154–165). Academic Press. https://doi.org/10.1016/B978-0-323-90798-9.00105-0
Hlaing, N., Zaw, S. T., & Aye, K. M. (2024). The Role of Agroforestry in Sustainable Land Use. Selvicoltura Asean, 1(5), 249–258. https://doi.org/10.70177/jsa.v1i5.1671
Itoh, S., Takeshige, A., Kasai, A., Kimura, S., Hayakawa, J., & Ohtsuchi, N. (2024). 5.19—Modeling Coastal Ecosystem Complexes. In D. Baird & M. Elliott (Eds.), Treatise on Estuarine and Coastal Science (Second Edition) (pp. 495–511). Academic Press. https://doi.org/10.1016/B978-0-323-90798-9.00057-3
Kianfar, E. (2025). Current situation and future outlook petroleum hydrocarbons in marine systems: A review. Environmental Technology & Innovation, 40, 104572. https://doi.org/10.1016/j.eti.2025.104572
Langdon, C. (2025). Chapter 17—Feeding, digestion and nutrition of marine bivalve suspension-feeders—A synopsis. In V. Kumar (Ed.), Nutrition and Physiology of Fish and Shellfish (pp. 743–811). Academic Press. https://doi.org/10.1016/B978-0-323-90873-3.00003-8
Lepage, M., Zucchetta, M., Wilms, T., Acolas, M.-L., Pérez-Ruzafa, A., & Lecaillon, G. (2025). Chapter 20—Restoration of fish habitats, populations, and communities. In H. Cabral, M. Lepage, J. Lobry, & O. Le Pape (Eds.), Ecology of Marine Fish (pp. 391–409). Academic Press. https://doi.org/10.1016/B978-0-323-99036-3.00019-2
Maes, L., Lambert, M., & Lefevre, O. (2024). The Socioeconomic Impact of Forest Degradation on Rural Communities. Selvicoltura Asean, 1(6), 304–315. https://doi.org/10.70177/jsa.v1i6.1676
M.F. Babarro, J., Gilcoto, M., Villacieros-Robineau, N., Dios, S., Costa, M. M., Gestal, C., Comeau, L. A., & Feio, H. (2024). The infaunal clam Polititapes rhomboides exposed to sediment mobilization and seawater warming: Recovery patterns and energetic constraints. Ecological Indicators, 159, 111735. https://doi.org/10.1016/j.ecolind.2024.111735
Nasution, R. A. R., Rakuasa, H., Turi, F., Hidayatullah, M., & Latue, P. C. (2024). Analysis of Average Land Surface Temperature of Java Island, Indonesia in 2024 using reduceRegions in Google Earth Engine. Selvicoltura Asean, 1(2), 80–95. https://doi.org/10.70177/jsa.v1i2.1182
Neumann, A., Fernando, Y., Saber, A., & Arhonditsis, G. B. (2024). Toward the development of an ecosystem model ensemble to support adaptive management in Lake Ontario. Environmental Reviews, 32(2), 231–262. https://doi.org/10.1139/er-2023-0100
Pittman, S. J., Swanborn, D. J. B., Connor, D. W., & Wright, D. J. (2024). 1.9—Application of Estuarine and Coastal Classifications in Marine Spatial Management. In D. Baird & M. Elliott (Eds.), Treatise on Estuarine and Coastal Science (Second Edition) (pp. 205–276). Academic Press. https://doi.org/10.1016/B978-0-323-90798-9.00040-8
Rigo, I., Bordoni, R., Betti, F., Dapueto, G., Massa, F., Paoli, C., Povero, P., Ruggeri, F., & Vassallo, P. (2024). Which natural or anthropogenic variables influence natural capital? An Italian case study. Ecological Indicators, 166, 112387. https://doi.org/10.1016/j.ecolind.2024.112387
Shennan, G., & Crabbe, R. (2024). A review of spaceborne synthetic aperture radar for invasive alien plant research. Remote Sensing Applications: Society and Environment, 36, 101358. https://doi.org/10.1016/j.rsase.2024.101358
Steward, R., Chopin, P., & Verburg, P. H. (2024). Supporting spatial planning with a novel method based on participatory Bayesian networks: An application in Curaçao. Environmental Science & Policy, 156, 103733. https://doi.org/10.1016/j.envsci.2024.103733
Trevisiol, F., Mandanici, E., Pagliarani, A., & Bitelli, G. (2024). Evaluation of Landsat-9 interoperability with Sentinel-2 and Landsat-8 over Europe and local comparison with field surveys. ISPRS Journal of Photogrammetry and Remote Sensing, 210, 55–68. https://doi.org/10.1016/j.isprsjprs.2024.02.021
Vadivel, M., Sundar, A. S., Venkataradhakrishnamurty, Soundararajan, M., Rajan, D., & Priya, V. (2025). Dynamic coastal vulnerability index: A machine learning approach to predict future impacts of climate change and human activity on coastal environments. Journal of South American Earth Sciences, 165, 105692. https://doi.org/10.1016/j.jsames.2025.105692
Xie, L., Liu, J., Zha, W., Li, Y., Hipsey, M. R., Ning, Z., Zhang, M., & Zhang, Z. (2025). Crab burrow morphology modulates vertical soil hydrological connectivity in saltmarshes: A field experimental study. Geoderma, 462, 117506. https://doi.org/10.1016/j.geoderma.2025.117506
Authors
Copyright (c) 2025 Dian Puspaningrum, Bachtiar Bachtiar, Ernikawati Ernikawati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.