THE POTENTIAL OF BAMBOO AS A SUSTAINABLE FOREST PRODUCT

Tiago Costa (1), Lucas Lima (2), Pedro Silva (3)
(1) Universidade Federal Rio Janeiro, Brazil,
(2) Universidade São Paulo, Brazil,
(3) Universidade Federal Santa Catarina, Brazil

Abstract

Bamboo is increasingly recognized as a sustainable forest product due to its rapid growth, versatility, and potential for contributing to environmental conservation. As global concerns about deforestation, climate change, and resource depletion grow, bamboo presents an alternative material that is both eco-friendly and economically viable. However, there is still limited research on its full potential, particularly in terms of its environmental benefits and commercial applications. This study aims to explore the potential of bamboo as a sustainable forest product by evaluating its environmental benefits, economic feasibility, and various commercial uses. The research also examines how bamboo cultivation can contribute to sustainable forest management and biodiversity conservation. A mixed-methods approach was used, combining a literature review, field surveys, and interviews with bamboo industry experts. Data were collected from bamboo cultivation sites, assessing growth rates, carbon sequestration potential, and local economic impacts. Qualitative interviews provided insights into the challenges and opportunities within the bamboo industry. The study found that bamboo grows rapidly, sequesters significant amounts of carbon, and provides an income-generating opportunity for rural communities. Bamboo-based products, such as construction materials and textiles, are gaining popularity due to their eco-friendly nature. However, challenges remain in terms of market development and supply chain infrastructure. Bamboo has substantial potential as a sustainable forest product that can play a key role in environmental conservation and economic development. Future research should focus on scaling up bamboo cultivation and improving market access to maximize its benefits.


 

Full text article

Generated from XML file

References

Ayer, S. (2025). Potential barriers to bamboo-based carbon credit initiatives in Nepal: What stands in the way? Advances in Bamboo Science, 12, 100179. https://doi.org/10.1016/j.bamboo.2025.100179

Bauer, M., Schneider, L., & Huber, A. (2024). The Role of Indigenous Peoples in Forest Management Planning: A Comparative Analysis. Selvicoltura Asean, 1(6), 293–303. https://doi.org/10.70177/jsa.v1i6.1675

Biney, M. A., Gusiatin, M. Z., Trakal, L., Moško, J., & Poho?elý, M. (2025). Utilization of co-substrates in municipal sewage sludge co-pyrolysis: Yields and characterization of biochar, bio-oil, and syngas, with economic feasibility analysis. Journal of Analytical and Applied Pyrolysis, 189, 107091. https://doi.org/10.1016/j.jaap.2025.107091

Chen, W.-H., Liang, P.-C., Wang, W.-Y., Chiang, P.-C., Ryšavý, J., ?espiva, J., & Chang, J.-S. (2025). Applications, life cycle assessment, and circular economy of bamboo torrefaction for sustainability: A state-of-the-art review. Bioresource Technology, 431, 132629. https://doi.org/10.1016/j.biortech.2025.132629

Davis, O., Thompson, E., & Clark, E. (2024). The Impact of Selective Logging on Forest Structure and Function. Selvicoltura Asean, 1(6), 282–292. https://doi.org/10.70177/jsa.v1i6.1674

Desta, H. S., Abebe, A., Woldemariam, T., Landsberg, F., Alamirew, T., & Zeleke, G. (2025). Weaving the green thread: Forest and landscape restoration and nature-based-solutions for achieving the SDGs in Oromia and former SNNP regions of Ethiopia. Nature-Based Solutions, 8, 100270. https://doi.org/10.1016/j.nbsj.2025.100270

Duan, Y., Dai, M., Wang, J., & Wang, Y. (2025). Bamboo pulp as a sustainable alternative in China’s pulp industry: Economic and environmental assessment. Environmental Impact Assessment Review, 115, 107966. https://doi.org/10.1016/j.eiar.2025.107966

Enebe, M. C., Ray, R. L., & Griffin, R. W. (2025). Carbon sequestration and soil responses to soil amendments – A review. Journal of Hazardous Materials Advances, 18, 100714. https://doi.org/10.1016/j.hazadv.2025.100714

Giannini, T. C., Andrino, C. O., Barbosa-Silva, R. G., Bitencourt, J. A., Borges, R. C., Brito, R. R., Cavalcante, R., Costa, C. P. W., Dantas, S., Gastauer, M., Gomes, V. F., Maia, U. M., Martello, F., Miranda, L., Nunes, S., Oliveira, G., Paracampo, A., Pontes, P. R., Ramos, S., … Biesmeijer, J. (2025). Measuring the natural capital of Amazonian forests: A case study of the National Forest of Carajás, Brazil. Ecosystem Services, 74, 101734. https://doi.org/10.1016/j.ecoser.2025.101734

Gupta, G., Kumar, R., Singh, K., Rawat, V., Lavania, P., Kumari, P., Rani, M., Dobriyal, M., Srivastav, M., & Kumar, P. (2026). Chapter 4—Forest resources: Sustainable exploitation and management. In P. Kumar, P. K. Srivastava, M. L. Khan, A. Arunachalam, P. S. Roy, & K. Kumar (Eds.), Advanced Geospatial and Ground Based Techniques in Forest Monitoring (pp. 85–109). Elsevier. https://doi.org/10.1016/B978-0-443-18949-4.00003-8

Induja, M., Thyagarajan, S., Mayildurai, R., Vaithiyanathan, R., Maruthavanan, T., Sarangi, P. K., Singh, S., Varshney, D., Sivaprakash, K., Mani, D., & Murphin Kumar, P. S. (2025). Lignocellulose-derived carbon Nanomaterials: Unlocking sustainable solutions for waste management and water depollution. Biomass and Bioenergy, 201, 108102. https://doi.org/10.1016/j.biombioe.2025.108102

Kerrouchi, H. B., Mortadha, H., Al-Othman, A., & Tawalbeh, M. (2025). 1.13—Bamboo as Green Material: Introduction. In P. A. G. Olabi (Ed.), Comprehensive Green Materials (First Edition) (pp. 170–181). Elsevier. https://doi.org/10.1016/B978-0-443-15738-7.00077-5

Krit, P., Chai, N., & Kiat, T. (2024). Forest Restoration and Rehabilitation: A Comparative Analysis of Techniques. Selvicoltura Asean, 1(3), 147–156. https://doi.org/10.70177/selvicoltura.v1i1.172

Li, Q., Huang, Z., Bian, F., Zhong, Z., & Zhang, X. (2025). Bamboo-sourced microbial fertilizers impact soil carbon cycling: Metagenomic insights from Moso bamboo plantations. Environmental Technology & Innovation, 40, 104548. https://doi.org/10.1016/j.eti.2025.104548

Liang, F., Yan, S., Shi, Z., Tu, T., Pezzuolo, A., & Feng, Q. (2025). Application of carbon biological sequestration technology in CCUS: Potential and optimization strategies for inorganic carbon absorption by plant root and CO2 carriers by biogas slurry. Journal of Cleaner Production, 528, 146766. https://doi.org/10.1016/j.jclepro.2025.146766

Liang, Z., Zhong, R. Y., & Jiang, Y. (2025). VR-enabled digital system in rural construction with sustainability evaluation. Digital Engineering, 7, 100066. https://doi.org/10.1016/j.dte.2025.100066

Liu, Z., Liu, W., Zhang, Y., Jiang, J., Yu, X., & Wang, X. (2026). Shallow resource foraging and deep-water shift: Plant-soil feedbacks sustain transient coexistence during Phyllostachys edulis invasion. CATENA, 262, 109687. https://doi.org/10.1016/j.catena.2025.109687

Nasiri, M., & Modarres, A. (2025). Stabilization of Forest Road Subgrades with Lime and Wood Ash: A Sustainable Approach to Enhancing Durability and Reducing Soil Erosion under Freeze–Thaw Cycles. Results in Engineering, 108394. https://doi.org/10.1016/j.rineng.2025.108394

Nguyen, T. B., Yoon, B., Nguyen, T. D., Oh, E., Ma, Y., Wang, M., & Suhr, J. (2023). A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications. Carbon, 206, 383–391. https://doi.org/10.1016/j.carbon.2023.02.060

Nouadjep, S. N., Kom, R. R., Ghotoneton, S. C., Bilo’o, P. Z., & Ngassoum, M. B. (2026). Triplochiton scleroxylon for biofuel sustainable applications: Integrated systematic review and economic appraisal with Aspen plus revenue modeling in Cameroon. Next Research, 3, 101100. https://doi.org/10.1016/j.nexres.2025.101100

Onyeaka, H., Hart, A., & Obileke, K. (2025). Chapter 3—Enhancing carbon neutrality: The role of biomass in CO2 uptake. In J. C. M. Pires, A. F. C. Esteves, & E. M. de A. C. Salgado (Eds.), Advances in Sustainable Applications of Microalgae (pp. 73–93). Elsevier Science Ltd. https://doi.org/10.1016/B978-0-443-22127-9.00003-2

Patel, H. R., Mathakia, R., Mangroliya, U. C., & Mandaliya, V. B. (2025). Sustainable bamboo: Technological innovations and patent insights for a greener future. Advances in Bamboo Science, 10, 100127. https://doi.org/10.1016/j.bamboo.2025.100127

Rajkumar, M., Gupta, P., Debbarma, R., Soragi, B., Mohammad, N., & Khan, M. L. (2026). Chapter 1—Review of the traditional methods and current trends of forest management. In P. Kumar, P. K. Srivastava, M. L. Khan, A. Arunachalam, P. S. Roy, & K. Kumar (Eds.), Advanced Geospatial and Ground Based Techniques in Forest Monitoring (pp. 3–35). Elsevier. https://doi.org/10.1016/B978-0-443-18949-4.00010-5

Rakuasa, H., Latue, P. C., & Pakniany, Y. (2024). Climate Change and its Impact on Asian Forest Landscapes: A Critical Review. Selvicoltura Asean, 1(1), 23–16. https://doi.org/10.55849/selvicoltura.v1i1.172

Samsudin, M. S., Mohd Ali, N. I., Mohamad, N. S., Kasavan, S., & Azid, A. (2025). Chapter 16—The market value of bamboo fibre and its future perspective. In M. N. Norizan, S. M. Sapuan, & M. N. Faiz Norrrahim (Eds.), Bamboo-Based Polymer Composites (pp. 397–421). Woodhead Publishing. https://doi.org/10.1016/B978-0-443-33445-0.00016-X

Senadheera, S. S., Withana, P. A., You, S., Tsang, D. C. W., Hwang, S. Y., & Ok, Y. S. (2025). Sustainable biochar: Market development and commercialization to achieve ESG goals. Renewable and Sustainable Energy Reviews, 217, 115744. https://doi.org/10.1016/j.rser.2025.115744

Sudhakar, H. (2025). Sustainability education: Cultivating environmental awareness and action through campus carbon sequestration studies. International Journal of Sustainability in Higher Education, 26(6), 1450–1472. https://doi.org/10.1108/IJSHE-09-2024-0641

Wei, S., Xiang, Y., & Li, Z. (2024). Balancing Conservation and Development: A Policy Framework for Sustainable Forest Management. Selvicoltura Asean, 1(4), 187–197. https://doi.org/10.70177/jsa.v1i4.1665

Xu, P., Li, Z., Xu, X., & Mao, P. (2025). Spatiotemporal dynamics panorama of operational energy consumption and carbon emissions in bamboo buildings: A sample of 275 cities in China. Energy, 325, 136165. https://doi.org/10.1016/j.energy.2025.136165

Xu, P., Tam, V. W. Y., Li, H., Zhu, J., & Xu, X. (2025). A critical review of bamboo construction materials for sustainability. Renewable and Sustainable Energy Reviews, 210, 115230. https://doi.org/10.1016/j.rser.2024.115230

Xu, T., Du, M., Yan, Y., & Singh, S. (2025). Wood-derived biochar for sustainable water remediation: Insights into modification techniques, adsorption performance, techno-economic aspects, and future outlook. Journal of Molecular Structure, 1346, 143141. https://doi.org/10.1016/j.molstruc.2025.143141

Yang, Q., Zhang, C., Shang, L., Wen, J., & Yang, S. (2025). An integrated hydrothermal and ball-milling approach for the co-production of glucose, xylose and residual lignin from Moso bamboo. Bioresource Technology, 436, 132985. https://doi.org/10.1016/j.biortech.2025.132985

Zhao, J., Zong, Z., Zhang, X., Luo, C., & Li, Z. (2025). Bamboo: A neglected candidate for polyhydroxyalkanoate production–A review. International Journal of Biological Macromolecules, 316, 144303. https://doi.org/10.1016/j.ijbiomac.2025.144303

Zhou, J., Tang, C., Vancov, T., Fu, S., Fang, Y., Ge, T., Dong, Y., Luo, Y., Yu, B., Cai, Y., White, J. C., & Li, Y. (2026). Biochar mitigates the suppressive effects of nitrogen deposition on soil methane uptake in a subtropical forest. Agriculture, Ecosystems & Environment, 395, 109951. https://doi.org/10.1016/j.agee.2025.109951

Zhu, M., Zhou, Z., Wu, X., Wan, J., Wang, J., Zheng, J., Liu, R., & Li, F. (2025). Prediction and spillover effects of forest expansion and management to increase carbon sinks in karst mountainous areas: A case study in Guizhou, China. Land Use Policy, 151, 107491. https://doi.org/10.1016/j.landusepol.2025.107491

Authors

Tiago Costa
tiagocooo@gmail.com (Primary Contact)
Lucas Lima
Pedro Silva
Costa, T., Lima, L. ., & Silva, P. . (2025). THE POTENTIAL OF BAMBOO AS A SUSTAINABLE FOREST PRODUCT. Journal of Selvicoltura Asean, 2(1), 36–47. https://doi.org/10.70177/jsa.v2i1.2031

Article Details