USING ARTIFICIAL INTELLIGENCE AND LIDAR DATA FOR HIGH-RESOLUTION FOREST INVENTORY AND ABOVE-GROUND BIOMASS ESTIMATION IN A SUMATRAN RAINFOREST

Nofirman Nofirman (1), Ahmed Shah (2), Usman Tariq (3)
(1) Universitas Prof. Dr. Hazairin, SH, Indonesia,
(2) Aga Khan University, Pakistan,
(3) COMSATS University Islamabad, Pakistan

Abstract

Accurate quantification of forest carbon stocks is critical for global climate change mitigation initiatives like REDD+. Traditional forest inventory methods are often labor-intensive, costly, and limited in scale, particularly in complex tropical ecosystems such as the Sumatran rainforest. The integration of advanced remote sensing technologies and artificial intelligence (AI) offers a transformative potential for overcoming these limitations. This study aimed to develop and validate a high-resolution model for individual tree detection and above-ground biomass (AGB) estimation in a Sumatran rainforest by synergizing airborne LiDAR data with machine learning algorithms. High-density LiDAR data was acquired over a 10,000-hectare study area. Concurrently, extensive field inventory data from 150 plots were collected to serve as ground truth. A deep learning model, specifically a Convolutional Neural Network (CNN), was trained to perform individual tree crown delineation (ITCD) from the LiDAR-derived canopy height model. Tree-level metrics were then used as predictors in a Random Forest algorithm to estimate AGB, which was calibrated against field-measured biomass. The CNN model successfully identified individual trees with an accuracy of 92.4%. The subsequent Random Forest model demonstrated high predictive power for AGB estimation, yielding a strong coefficient of determination ( = 0.89) and a low Root Mean Square Error (RMSE) of 25.8 Mg/ha. The approach generated a high-resolution (1-meter) AGB map, revealing detailed spatial variations in carbon stock across the landscape. The fusion of AI and LiDAR data provides a highly efficient methodology for forest inventory and AGB mapping in dense tropical rainforests. This approach significantly enhances our capacity to monitor carbon dynamics, forest conservation and climate policy.

Full text article

Generated from XML file

References

Arruda, D. M., Villa, P., Rodrigues, A., Villanova, P. H., & Torres, C. M. M. E. (2025). Atlantic Forests: Phytogeography and conservation. In Terrestrial Biomes (pp. 443–456). Elsevier. https://doi.org/10.1016/B978-0-443-36569-0.00031-8

Basset, C., & Zaldo-Aubanell, Q. (2025). The role of AI-enhanced microscopy in soil biodiversity assessment: Advancing soil security, connectivity and governance with implications for the European Directive on Soil Monitoring and Resilience, and global agendas. Soil Security, 21, 100203. https://doi.org/10.1016/j.soisec.2025.100203

Bekmurzaeva, R., Kalimullin, R., & Aguzarova, F. (2024). Application of drones and artificial intelligence to monitor and protect natural ecosystems. BIO Web of Conferences, 140, 01008. https://doi.org/10.1051/bioconf/202414001008

Blanton, A., Mohan, M., Galgamuwa, G. A. P., Watt, M. S., Montenegro, J. F., Mills, F., Carlsen, S. C. H., Velasquez-Camacho, L., Bomfim, B., Pons, J., Broadbent, E. N., Kaur, A., Direk, S., de-Miguel, S., Ortega, M., Abdullah, M., Rondon, M., Wan Mohd Jaafar, W. S., Silva, C. A., … Ewane, E. B. (2024). The status of forest carbon markets in Latin America. Journal of Environmental Management, 352, 119921. https://doi.org/10.1016/j.jenvman.2023.119921

Boutagayout, A., Ezzouggari, R., Kouighat, M., Adiba, A., Laasli, S.-E., Farhaoui, A., & Lahlali, R. (2026). Advances in artificial intelligence for plant biology and crop breeding: An overview. In AI Technologies for Crop Breeding (pp. 1–33). Elsevier. https://doi.org/10.1016/B978-0-443-33633-1.00002-2

Buchelt, A., Adrowitzer, A., Kieseberg, P., Gollob, C., Nothdurft, A., Eresheim, S., Tschiatschek, S., Stampfer, K., & Holzinger, A. (2024). Exploring artificial intelligence for applications of drones in forest ecology and management. Forest Ecology and Management, 551, 121530. https://doi.org/10.1016/j.foreco.2023.121530

Bu?ivalová, Z., Yoh, N., Butler, R. A., Chandra Sagar, H. S. S., & Game, E. T. (2023). Broadening the focus of forest conservation beyond carbon. Current Biology, 33(11), R621–R635. https://doi.org/10.1016/j.cub.2023.04.019

Chen, J., Liang, X., Liu, Z., Gong, W., Chen, Y., Hyyppä, J., Kukko, A., & Wang, Y. (2024). Tree species recognition from close-range sensing: A review. Remote Sensing of Environment, 313, 114337. https://doi.org/10.1016/j.rse.2024.114337

Chen, Z., Chen, Y., Shi, T., Chen, X., Pan, X., Lei, J., Wu, T., Li, Y., Liu, Q., & Liu, X. (2025). Estimation of soil organic carbon in tropical rainforest regions by combining UAV hyperspectral and LiDAR data. CATENA, 258, 109195. https://doi.org/10.1016/j.catena.2025.109195

Da Silva, M. P., Correa, S. P. L. P., Schaefer, M. A. R., Reis, J. C. S., Nunes, I. M., Dos Santos, J. A., & Oliveira, H. N. (2025). Advancing agricultural remote sensing: A comprehensive review of deep supervised and Self-Supervised Learning for crop monitoring. Computers & Graphics, 133, 104434. https://doi.org/10.1016/j.cag.2025.104434

Ewane, E. B., Bajaj, S., Velasquez-Camacho, L., Srinivasan, S., Maeng, J., Singla, A., Luber, A., de-Miguel, S., Richardson, G., Broadbent, E. N., Cardil, A., Jaafar, W. S. W. M., Abdullah, M., Corte, A. P. D., Silva, C. A., Doaemo, W., & Mohan, M. (2023). Influence of urban forests on residential property values: A systematic review of remote sensing-based studies. Heliyon, 9(10), e20408. https://doi.org/10.1016/j.heliyon.2023.e20408

Ghasemi, M., Latifi, H., & Iranmanesh, Y. (2025). Geometry-based point cloud fusion of dual-layer UAV photogrammetry and a modified unsupervised generative adversarial network for 3D tree reconstruction in semi-arid forests. Computers and Electronics in Agriculture, 239, 111024. https://doi.org/10.1016/j.compag.2025.111024

Guo, B., Wang, Z., Pei, L., Zhu, X., Chen, Q., Wu, H., Zhang, W., & Zhang, D. (2023). Reconstructing MODIS aerosol optical depth and exploring dynamic and influential factors of AOD via random forest at the global scale. Atmospheric Environment, 315, 120159. https://doi.org/10.1016/j.atmosenv.2023.120159

He, L., Pang, Y., Zhang, Z., Liang, X., & Chen, B. (2023). ICESat-2 data classification and estimation of terrain height and canopy height. International Journal of Applied Earth Observation and Geoinformation, 118, 103233. https://doi.org/10.1016/j.jag.2023.103233

Henniger, H., Huth, A., Frank, K., & Bohn, F. J. (2023). Creating virtual forests around the globe and analysing their state space. Ecological Modelling, 483, 110404. https://doi.org/10.1016/j.ecolmodel.2023.110404

Holcomb, A., Mathis, S. V., Coomes, D. A., & Keshav, S. (2023). Computational tools for assessing forest recovery with GEDI shots and forest change maps. Science of Remote Sensing, 8, 100106. https://doi.org/10.1016/j.srs.2023.100106

Kemarau, R. A., Sakawi, Z., Abdul Maulud, K. N., Wan Mohd Jaafar, W. S., Suab, S. A., Eboy, O. V., Fitri Md Nor, N. N., & Sa’adi, Z. (2025). Advancements and applications of space borne of remote sensing in climate change research: A scoping review. The Egyptian Journal of Remote Sensing and Space Sciences, 28(3), 468–483. https://doi.org/10.1016/j.ejrs.2025.07.004

Kuang, W., Ho, H. W., Zhou, Y., Suandi, S. A., & Ismail, F. (2024). A comprehensive review on tree detection methods using point cloud and aerial imagery from unmanned aerial vehicles. Computers and Electronics in Agriculture, 227, 109476. https://doi.org/10.1016/j.compag.2024.109476

Latterini, F., Camarretta, N., & Watt, M. S. (2025). Remote sensing for planning harvesting operations and monitoring their effects on the forest ecosystem: State of the art and future perspectives. Forest Ecology and Management, 597, 123175. https://doi.org/10.1016/j.foreco.2025.123175

Latue, P. C., Karuna, J. R., Rakuasa, H., & Pakniany, Y. (2024). Impact of Climate Change on Increasing Land Surface Temperature in Indonesia: A literature review. Selvicoltura Asean, 1(2), 96–104. https://doi.org/10.70177/jsa.v1i2.1182

Latue, P. C., Pakniany, Y., & Rakuasa, H. (2024). Land Cover Change Model in Sirimau Sub-district, Ambon City, Indonesia. Selvicoltura Asean, 1(1), 10–16. https://doi.org/10.55849/selvicoltura.v1i1.172

Latue, P. C., & Rakuasa, H. (2024). Land Cover Change Analysis of TernateSelatanSub-district, Ternate City in 2014 and 2024. Selvicoltura Asean, 1(1), 17–22. https://doi.org/10.55849/selvicoltura.v1i1.172

Liang, S., He, T., Huang, J., Jia, A., Zhang, Y., Cao, Y., Chen, X., Chen, X., Cheng, J., Jiang, B., Jin, H., Li, A., Li, S., Li, X., Liu, L., Liu, X., Ma, H., Ma, Y., Song, D.-X., … Song, L. (2024). Advancements in high-resolution land surface satellite products: A comprehensive review of inversion algorithms, products and challenges. Science of Remote Sensing, 10, 100152. https://doi.org/10.1016/j.srs.2024.100152

Lin, Y. (2024). Tracking Darwin’s footprints but with LiDAR for booting up the 3D and even beyond-3D understanding of plant intelligence. Remote Sensing of Environment, 311, 114246. https://doi.org/10.1016/j.rse.2024.114246

Ma, Y., Chen, S., Ermon, S., & Lobell, D. B. (2024). Transfer learning in environmental remote sensing. Remote Sensing of Environment, 301, 113924. https://doi.org/10.1016/j.rse.2023.113924

Mandal, M., & Ramu, M. (2024). A Holistic Framework for Planning and Managing Tropical Forest Resources. Selvicoltura Asean, 1(2), 66–79. https://doi.org/10.55849/selvicoltura.v1i1.172

Mohamad Zaki, M. A., Ooi, J., Ng, W. P. Q., How, B. S., Lam, H. L., Foo, D. C. Y., & Lim, C. H. (2025). Impact of industry 4.0 technologies on the oil palm industry: A literature review. Smart Agricultural Technology, 10, 100685. https://doi.org/10.1016/j.atech.2024.100685

Müllerová, J., Bartaloš, T., Gago, X., Kent, R., Michez, A., Mokroš, M., Mücher, S., & Paulus, G. (2023). Vegetation mapping and monitoring by unmanned aerial systems (UAS)—Current state and perspectives. In Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments (pp. 93–124). Elsevier. https://doi.org/10.1016/B978-0-323-85283-8.00008-4

Nam, L. H., Anh, N. T., & Mai, N. T. (2024). The Role of Wildlife Corridors in Maintaining Biodiversity and Ecosystem Services. Selvicoltura Asean, 1(5), 239–248. https://doi.org/10.70177/jsa.v1i5.1670

Nogueira, E. A., Cabacinha, C. D., & Soares, F. (2025). Integration of Ecological Informatics, Remote Sensing, and Machine Learning: A Systematic Literature Review. In Innovative Conservation Techniques and Perspectives (pp. 21–33). Elsevier. https://doi.org/10.1016/B978-0-443-40490-0.00002-7

Oliveira, A. H. M., Chaves, J. H., Matricardi, E. A. T., Felix, I. M., Magliano, M. M., & Martorano, L. G. (2025). Monitoring sustainable forest management plans in the Amazon: Integrating LiDAR data and PlanetScope imagery. Remote Sensing Applications: Society and Environment, 38, 101535. https://doi.org/10.1016/j.rsase.2025.101535

Rather, S. A., Kumar, A., Liu, H., & Schneider, H. (2025). Rosewoods at crossroads: A modern paradigm to secure the survival of the world’s most trafficked wild species. Biological Conservation, 311, 111399. https://doi.org/10.1016/j.biocon.2025.111399

Schuh, M., Favarin, J. A. S., Marchesan, J., Alba, E., Fernando Berra, E., & Soares Pereira, R. (2020). Machine learning and generalized linear model techniques to predict aboveground biomass in Amazon rainforest using LiDAR data. Journal of Applied Remote Sensing, 14(03). https://doi.org/10.1117/1.JRS.14.034518

Xu, Z., Li, J., Cheng, S., Rui, X., Zhao, Y., He, H., Guan, H., Sharma, A., Erxleben, M., Chang, R., & Xu, L. L. (2025). Deep learning for wildfire risk prediction: Integrating remote sensing and environmental data. ISPRS Journal of Photogrammetry and Remote Sensing, 227, 632–677. https://doi.org/10.1016/j.isprsjprs.2025.06.002

Yue, Z., & Xiao, C. (2025). A meta-review of remote sensing for rubber plantations. International Journal of Applied Earth Observation and Geoinformation, 141, 104625. https://doi.org/10.1016/j.jag.2025.104625

Yun, T., Li, J., Ma, L., Zhou, J., Wang, R., Eichhorn, M. P., & Zhang, H. (2024). Status, advancements and prospects of deep learning methods applied in forest studies. International Journal of Applied Earth Observation and Geoinformation, 131, 103938. https://doi.org/10.1016/j.jag.2024.103938

Zadbagher, E., Marangoz, A., & Becek, K. (2024). Estimation of above-ground biomass using machine learning approaches with InSAR and LiDAR data in tropical peat swamp forest of Brunei Darussalam. iForest - Biogeosciences and Forestry, 17(3), 172–179. https://doi.org/10.3832/ifor4434-017

Zamora-Ledezma, E., Macías Pro, M., Jarre Castro, E., Vera Vélez, J., Briones Saltos, R., Vélez Velásquez, J., Loor Dueñas, R., Salas Macias, C., & Pacheco Gil, H. (2025). Advancing carbon quantification: A comparative evaluation of gravimetric and volumetric methods for soil carbon assessment in tropical ecosystems. Results in Engineering, 25, 104141. https://doi.org/10.1016/j.rineng.2025.104141

Zhou, J., Brereton, P., & Campbell, K. (2024). Progress towards achieving intelligent food assurance systems. Food Control, 164, 110548. https://doi.org/10.1016/j.foodcont.2024.110548

Zhu, C., Li, Y., Ding, J., Rao, J., Xiang, Y., Ge, X., Wang, J., Wang, J., Chen, X., & Zhang, Z. (2025). Spatiotemporal analysis of AGB and BGB in China: Responses to climate change under SSP scenarios. Geoscience Frontiers, 16(3), 102038. https://doi.org/10.1016/j.gsf.2025.102038

Authors

Nofirman Nofirman
nofirman@unihaz.ac.id (Primary Contact)
Ahmed Shah
Usman Tariq
Nofirman, N., Shah, A. ., & Tariq, U. . (2025). USING ARTIFICIAL INTELLIGENCE AND LIDAR DATA FOR HIGH-RESOLUTION FOREST INVENTORY AND ABOVE-GROUND BIOMASS ESTIMATION IN A SUMATRAN RAINFOREST. Journal of Selvicoltura Asean, 2(4), 209–224. https://doi.org/10.70177/jsa.v2i4.2483

Article Details