THE EFFECTIVENESS OF BIOCHAR APPLICATION IN THE REFORESTATION OF POST-MINING LANDS IN EAST KALIMANTAN

Dani Lukman Hakim (1), Marta Kowalska (2), Theresa Gibbons (3)
(1) Institut Teknologi Sains Bandung, Indonesia,
(2) Jagiellonian University, Poland,
(3) Palau Community College, Palau

Abstract

Large-scale mining in East Kalimantan leaves severely degraded lands characterized by extreme acidity and chemical toxicity, which critically impede mandatory reforestation efforts often exacerbated by the transient nature of conventional amendments. This study aimed to rigorously quantify the effectiveness of varying biochar dosages on the chemical stabilization of post-mining spoil and the subsequent survival and growth of local pioneer tree species, with the goal of developing an Optimal Biochar Application Protocol. A multi-factorial, randomized complete block design experiment was conducted over 24 months, comparing three biochar dosages (up to 10 \text{ t/ha}) against control and mineral fertilizer plots, supported by a Life-Cycle Cost Analysis (LCCA). Results demonstrated that the optimal dosage (10 \text{ t/ha}) neutralized the spoil’s \text{pH} from 4.0 to 6.5, doubled the Cation Exchange Capacity (\text{CEC}), and achieved a 92\% plant survival rate (versus 48\% in control plots). The ecologically superior biochar treatment also proved to be 35\% more cost-effective than repetitive mineral fertilization over the study period. The research concludes that biochar provides the durable, holistic, and cost-effective solution, successfully addressing the root cause of reclamation failure. The findings validate the Optimal Biochar Application Protocol, compelling a necessary shift toward sustainable, carbon-sequestering reclamation practices.


 

Full text article

Generated from XML file

References

Acen, C., Bamisile, O., Cai, D., Ukwuoma, C. C., Obiora, S., Huang, Q., Uzun Ozsahin, D., & Adun, H. (2024). The complementary role of carbon dioxide removal: A catalyst for advancing the COP28 pledges towards the 1.5 °C Paris Agreement target. Science of The Total Environment, 947, 174302. https://doi.org/10.1016/j.scitotenv.2024.174302

Adun, H., Ampah, J. D., Bamisile, O., & Hu, Y. (2024). The synergistic role of carbon dioxide removal and emission reductions in achieving the Paris Agreement goal. Sustainable Production and Consumption, 45, 386–407. https://doi.org/10.1016/j.spc.2024.01.004

Alsubaih, A., Sepehrnoori, K., Mojdeh, D., & Lopez, M. A. (2025). A comprehensive review of CO2 subsurface storage: Integrity, safety, and economic viability. Energy Geoscience, 6(3), 100441. https://doi.org/10.1016/j.engeos.2025.100441

Anokye, K., & Darko, L. O. (2025). Ecological responses to anthropogenic stress: Restoring degraded landscapes from galamsey activities in Ghana – A review. Cleaner Waste Systems, 12, 100423. https://doi.org/10.1016/j.clwas.2025.100423

Aslam, T., Omerbegovi?, N. S., Sher, F., Bernardo, P., Khan, M. K., Benettayeb, A., Rahman, S., Zafar, F., & Razmkhah, O. (2026). Chapter 12—Challenges, barriers and solutions in achieving net zero. In F. Sher (Ed.), Net ZERO (pp. 623–706). Elsevier. https://doi.org/10.1016/B978-0-443-36426-6.00025-3

Bushra, R., Khayal, A., Ahmad, M., Song, J., Jin, Y., & Xiao, H. (2025). Catalytic conversion of polymer waste into high-value products for advancing circular economy and eco-sustainability. Journal of Analytical and Applied Pyrolysis, 189, 107052. https://doi.org/10.1016/j.jaap.2025.107052

Das, S., Dutta, S., Roy Choudhury, M., Garai, S., Mukherjee, S., Sengupta, S., Jana, S., Dey, S., Dhar, A., Dutta, S., & Awasthi, A. (2025). Regenerating rural soil and ecosystems: A 15-year systematic review of emerging methods and technologies. Science of The Total Environment, 990, 179926. https://doi.org/10.1016/j.scitotenv.2025.179926

de Moraes, D. R., Soares, L. O., de Almeida Guimarães, V., Santos, D. C. L. e P., & Boloy, R. A. M. (2025). Technology roadmap of low-carbon hydrogen: Trends for risk management strategies. Process Safety and Environmental Protection, 203, 107937. https://doi.org/10.1016/j.psep.2025.107937

Dinneya-Onuoha, E. (2025). Unlocking renewable energy materials in Nigeria: Availability, application, and roadmap for sustainability. RSC Sustainability, 3(6), 2534–2566. https://doi.org/10.1039/d5su00121h

Dutta, S., Gorain, S., Roy, J., Das, R., Banerjee, S., Gorai, S. K., Roy Choudhury, M., & Das, S. (2025). Bamboo for global sustainability: A systematic review of its environmental and ecological implications, climate action, and biodiversity contributions. Environmental Reviews, 33, 1–26. https://doi.org/10.1139/er-2025-0032

Fariq, A., Nizam, Z., & Idris, H. (2024). Biodiversity Conservation in the Anthropocene: Challenges and Solutions. Selvicoltura Asean, 1(3), 137–146. https://doi.org/10.70177/jsa.v1i3.1660

Ghiat, I., Banu, A., Bicer, Y., Amhamed, A. I., & Al-Ansari, T. (2025). Circularity within carbon capture networks: A review of capture and utilization technologies. Journal of CO2 Utilization, 95, 103075. https://doi.org/10.1016/j.jcou.2025.103075

Hualpa-Cutipa, E., Maldonado-Jimenez, I., Yana-Neira, E. A., Mena, A. G. S., Luis-Alaya, B., Chuquichanca, M., Alba, S. R. R., Tena, L. K. C., & Flores, A. G. (2025). Chapter 5—Phyto-engineering in repairing of infected or damaged ecosystem. In N. Dwivedi, S. Dwivedi, & M. P. Shah (Eds.), Integrated Biotechnological Solutions for the Treatment of Industrial Wastewater (pp. 125–158). Elsevier. https://doi.org/10.1016/B978-0-443-23607-5.00007-6

Ishaq, H., & Crawford, C. (2025). Negative emission technologies: A way forward? RSC Sustainability, 3(9), 3652–3680. https://doi.org/10.1039/d5su00162e

Khan, A. H. A., Budzy?ska, S., Zine, H., Vázquez-Núñez, E., Talpur, S. A., Hassan, M., & Barros, R. (2025). Dendroremediation: A sustainable nature-based solution for management of abandoned mining sites and brownfields. Journal of Cleaner Production, 501, 145342. https://doi.org/10.1016/j.jclepro.2025.145342

Kochar, R., Kalsie, A., & Deka, N. (2025). Voluntary Carbon Markets (VCMs) in a nutshell: A systematic review based on the empirical evidence from across the globe. Journal of Cleaner Production, 522, 146261. https://doi.org/10.1016/j.jclepro.2025.146261

Kumar, A., Singh, S., Gupta, A. K., & Rani, K. (2025). Ecorestoration of degraded coal mines in India, present status and way forward for sustainable land management: A systematic review. Environmental and Sustainability Indicators, 28, 100872. https://doi.org/10.1016/j.indic.2025.100872

Ma, J., Zhou, Y., He, L., Kenjiebo, P., Zheng, Y., & Liu, X. (2025). Artificial intelligence for carbon sequestration: A multi-scale review of nature-based and engineered pathways. Science of The Total Environment, 1005, 180833. https://doi.org/10.1016/j.scitotenv.2025.180833

Mandal, M., & Ramu, M. (2024). A Holistic Framework for Planning and Managing Tropical Forest Resources. Selvicoltura Asean, 1(2), 66–79. https://doi.org/10.55849/selvicoltura.v1i1.172

Nair, K. P. (2025). Climate resilient sustainable agriculture to ensure global food security. In Advances in Agronomy. Academic Press. https://doi.org/10.1016/bs.agron.2025.09.003

Nasution, R. A. R., Rakuasa, H., Turi, F., Hidayatullah, M., & Latue, P. C. (2024). Analysis of Average Land Surface Temperature of Java Island, Indonesia in 2024 using reduceRegions in Google Earth Engine. Selvicoltura Asean, 1(2), 80–95. https://doi.org/10.70177/jsa.v1i2.1182

Nwali, O. I., Oladunjoye, M. A., & Alao, O. A. (2024). A review of atmospheric carbon dioxide sequestration pathways; processes and current status in Nigeria. Carbon Capture Science & Technology, 12, 100208. https://doi.org/10.1016/j.ccst.2024.100208

Oni, B. A., Oni, O. Y., Sunday, O., Ojo, V. O., & Odofin, O. L. (2025). Synergizing climate mitigation and circular economy: A Comprehensive review for achieving carbon neutrality. Green Technologies and Sustainability, 100319. https://doi.org/10.1016/j.grets.2025.100319

Panda, P. P., Samal, D. P. K., Sukla, L. B., Behera, S. K., & Das, A. P. (2026). Chapter 12—The effective recovery of anthropogenic waste in the freshwater environment and the marine ecosystem: Obstacles, prospects, and approaches. In A. P. Das, S. Mishra, & M. P. Shah (Eds.), Decarbonization of Wastewater Pollutants as a Sustainable Solution (pp. 271–308). Elsevier. https://doi.org/10.1016/B978-0-443-33062-9.00024-2

Pandey, V. C., Gajic, G., Lebrun, M., & Mahajan, P. (2024). Chapter 4—Cash/valuable crop production on polluted land. In V. C. Pandey, G. Gajic, M. Lebrun, & P. Mahajan (Eds.), Designer Cropping Systems for Polluted Land (pp. 189–258). Elsevier. https://doi.org/10.1016/B978-0-323-95618-5.00003-8

Pandian, K., Mustaffa, M. R. A. F., Mahalingam, G., Paramasivam, A., John Prince, A., Gajendiren, M., Rafiqi Mohammad, A. R., & Varanasi, S. T. (2024). Synergistic conservation approaches for nurturing soil, food security and human health towards sustainable development goals. Journal of Hazardous Materials Advances, 16, 100479. https://doi.org/10.1016/j.hazadv.2024.100479

Raina, N., Zavalloni, M., & Viaggi, D. (2024). Incentive mechanisms of carbon farming contracts: A systematic mapping study. Journal of Environmental Management, 352, 120126. https://doi.org/10.1016/j.jenvman.2024.120126

Rakuasa, H., Latue, P., & Pakniany, Y. (2024). A Geographic Perspective in the Context of Political Ecology for Understanding Strategic Environmental Assessment in Indonesia. Selvicoltura Asean, 1(1), 33–42. https://doi.org/10.55849/selvicoltura.v1i1.172

Rasool, M. H., & Moiz Hashmi, S. A. (2025). Carbon capture and storage: An evidence-based review of its limitations and missed promises. Petroleum Research. https://doi.org/10.1016/j.ptlrs.2025.09.005

Riahi, A., Muretta, J., & LaDouceur, R. (2025). Advancing CO2 separation and capture in post-combustion scenarios using resonant vibration techniques. Carbon Trends, 20, 100521. https://doi.org/10.1016/j.cartre.2025.100521

Salehi, N., Colosi, L. M., & Shafiee-Jood, M. (2025). Evaluating the suitability of direct air carbon capture and storage in Virginia using geospatial multi-criteria decision analysis. Renewable and Sustainable Energy Reviews, 216, 115669. https://doi.org/10.1016/j.rser.2025.115669

Sparks, D. L., Singh, B., & Siebecker, M. G. (2024). Chapter 3—Chemistry of Soil Organic Matter. In D. L. Sparks, B. Singh, & M. G. Siebecker (Eds.), Environmental Soil Chemistry (Third Edition) (pp. 105–167). Academic Press. https://doi.org/10.1016/B978-0-443-14034-1.00003-4

Wei, S., Xiang, Y., & Li, Z. (2024). Balancing Conservation and Development: A Policy Framework for Sustainable Forest Management. Selvicoltura Asean, 1(4), 187–197. https://doi.org/10.70177/jsa.v1i4.1665

Werden, L. K., Cole, R. J., Schönhofer, K., Holl, K. D., Zahawi, R. A., Averill, C., Schweizer, D., Calvo-Alvarado, J. C., Hamilton, D., Joyce, F. H., San-José, M., Hofhansl, F., Briggs, L., Rodríguez, D., Tingle, J. W., Chiriboga, F., Broadbent, E. N., Quirós-Cedeño, G. J., & Crowther, T. W. (2024). Assessing innovations for upscaling forest landscape restoration. One Earth, 7(9), 1515–1528. https://doi.org/10.1016/j.oneear.2024.07.011

Zhu, Z., Zhao, S., Li, Q., Shi, Z., Wu, Y., & Wang, L. (2025). Spatiotemporal evolution and prediction of land use change and carbon storage in ionic rare earth mining areas based on the YOLOv11–SegFormer–InVEST–PLUS integrated model. Ecological Indicators, 178, 113983. https://doi.org/10.1016/j.ecolind.2025.113983

Authors

Dani Lukman Hakim
dani.hakim@itsb.ac.id (Primary Contact)
Marta Kowalska
Theresa Gibbons
Hakim, D. . L., Kowalska, M. ., & Gibbons, T. . (2025). THE EFFECTIVENESS OF BIOCHAR APPLICATION IN THE REFORESTATION OF POST-MINING LANDS IN EAST KALIMANTAN. Journal of Selvicoltura Asean, 2(6), 354–367. https://doi.org/10.70177/jsa.v2i6.2767

Article Details