THE ROLE OF SHADE-GROWN COFFEE AGROFORESTRY SYSTEMS IN CONSERVING BIRD DIVERSITY IN THE SUMATRAN HIGHLANDS
Abstract
Conservation in the Sumatran Highlands is critically threatened by the continuous simplification of shade-grown coffee (SGC) agroforestry systems into sun-grown monocultures, necessitating an urgent evaluation of the ecological function of complex SGC structures. This study aimed to systematically quantify avian species richness (SR) and functional diversity (FDI) across the coffee land-use gradient to establish the specific structural determinants necessary for developing an Avian-Optimized Agroforestry Protocol (AOAP). A quantitative, gradient-based comparative study utilized the Fixed-Radius Point Count method and meticulous structural measurements across 54 plots. Data were analyzed using ANOVA and multiple linear regression. Results showed that High-Diversity SGC (HD-SGC) plots retained 72\% of avian SR and maintained an FDI (4.1) statistically equivalent to natural forest fragments (4.8), proving their functional viability. Regression confirmed that Shade Tree Basal Area (BA) and Canopy Closure (CC) are the most significant positive predictors of bird diversity (R^2=0.78, p < 0.001). Simplified systems, conversely, registered a steep 40\% drop in SR, confirming their ineffectiveness. The research concludes that the AOAP is validated by confirming that conservation value is determined by structural complexity, not just 'shade.' This compels global certification schemes to adopt precise, performance-based ecological standards using quantitative metrics like BA and CC.
Full text article
References
Al-Nasser, M., Al-Mansour, Y., & Al-Sayid, N. (2024). The Role of Mycorrhizal Fungi in Forest Ecosystem Health. Selvicoltura Asean, 1(6), 271–281. https://doi.org/10.70177/jsa.v1i6.1673
Arellanos, E., López, G. M., Guadalupe, G., & García, L. (2025). Balancing tree and crop biodiversity and yield in coffee plantations of the Peruvian Amazon: The role of shade and certification as indicators of sustainable management. Environmental Challenges, 20, 101223. https://doi.org/10.1016/j.envc.2025.101223
Aziz, S., Akhtar, S., & Amin, R. (2024). Illegal Logging and Its Impact on Forest Ecosystems in Southeast Asia. Selvicoltura Asean, 1(4), 177–186. https://doi.org/10.70177/jsa.v1i4.1664
Bhat, S., Kumar, D., Paramesh, V., Kumar, P., Ravishankar, N., Kumar, S., Kashyap, P., & Arunachalam, V. (2023). Enhancing farm profitability and sustainability through integrated farming systems: A case study of coastal Karnataka, India. Farming System, 1(3), 100052. https://doi.org/10.1016/j.farsys.2023.100052
Bhoi, T. K., Samal, I., Behera, B., Mahanta, D. K., Komal, J., & Athulya, R. (2025). Predatory birds in agroforestry: Dawn of a new era for biological control from multitrophic interactions. Avian Research, 16(3), 100260. https://doi.org/10.1016/j.avrs.2025.100260
Davis, O., Thompson, E., & Clark, E. (2024). The Impact of Selective Logging on Forest Structure and Function. Selvicoltura Asean, 1(6), 282–292. https://doi.org/10.70177/jsa.v1i6.1674
Debie, E. (2025). Synergistic integration of urban agriculture and green infrastructure to enhance urban sustainability in Bahir Dar, Ethiopia. City and Environment Interactions, 27, 100216. https://doi.org/10.1016/j.cacint.2025.100216
Dinesh, G. K., Venkatramanan, V., Jayaraman, S., Bolan, N., Rao, C. S., Meena, R. S., Prasad, J., Ramasamy, V., Bhatt, R., Dubey, R., Sinduja, M., Raveena, R., Harper, R., Karthika, S., Smith, P., Prasad, S., Sabarivasan, R., Dalal, R. C., Lal, R., … Velmurugan, A. (2025). Carbon farming: Ecosystem services and its potential in achieving UN sustainable development goals. In Advances in Agronomy. Academic Press. https://doi.org/10.1016/bs.agron.2025.10.002
Edwards, D. P., & Cerullo, G. R. (2024). Biodiversity is central for restoration. Current Biology, 34(9), R371–R379. https://doi.org/10.1016/j.cub.2024.02.032
Etana, B., Atickem, A., Fashing, P. J., Tsegaye, D., De Beenhouwer, M., Lens, L., Bekele, A., & Stenseth, N. Chr. (2024). Mammalian community responses in relation to anthropogenic disturbances and resource gradients in the shade coffee forest ecosystem of Southwestern Ethiopia. Global Ecology and Conservation, 53, e02991. https://doi.org/10.1016/j.gecco.2024.e02991
Figueroa-Alvarez, J. A., Ortega-Álvarez, R., Manson, R. H., Sosa, V. J., Vázquez-Reyes, L. D., Medina Mena, I., & Bautista Bautista, L. (2024). Insectivorous birds and potential pest control services: An occupancy study of functional groups in a coffee landscape in Oaxaca, Mexico. Perspectives in Ecology and Conservation, 22(4), 331–341. https://doi.org/10.1016/j.pecon.2024.09.002
George, A., Joseph, S., Mohan, M., & Kunhamu, T. K. (2025). Carbon pools in the agroforestry landscapes of the Western Ghats biodiversity hotspot of Kerala, India. CATENA, 250, 108807. https://doi.org/10.1016/j.catena.2025.108807
Gepts, P. (2023). Biocultural diversity and crop improvement. Emerging Topics in Life Sciences, 7(2), 151–196. https://doi.org/10.1042/ETLS20230067
Guilin, X., Jia, D., Wang, Y., Zou, G., & Jie, L. (2024). The Precision Agriculture Revolution in Asia: Optimizing Crop Yields with IoT Technology. Selvicoltura Asean, 1(2), 43–53. https://doi.org/10.55849/selvicoltura.v1i1.172
Holle, M. J. M., Apriyani, V., & Mumbunan, S. (2025). Systematic evidence map of coffee agroecosystem management and biodiversity linkages in producing countries. Cleaner and Circular Bioeconomy, 11, 100147. https://doi.org/10.1016/j.clcb.2025.100147
Kassa, G., Bekele, T., Demissew, S., & Abebe, T. (2023). Plant species diversity, plant use, and classification of agroforestry homegardens in southern and southwestern Ethiopia. Heliyon, 9(6), e16341. https://doi.org/10.1016/j.heliyon.2023.e16341
Kumar, P., Perez, K. C., Biswal, A., Sun, H., Dwivedi, A. K., Hama, S., Khalili, S., Ahlawat, A., de Fatima Andrade, M., Alves, R. A., Amaral dos Santos, E. A., Athanassiadou, M., Ribeiro, C. B., Bhusal, P., Bucalem, M. L., Buchanan, B. G., Candido, L. F., Cao, S.-J., Casteli Figueiredo Gallardo, A. L., … Yao, R. (2025). Overlooked Considerations in Prescribing Green and Blue Infrastructure Solutions for Urban Environments. The Innovation, 101184. https://doi.org/10.1016/j.xinn.2025.101184
Latue, P. C., Karuna, J. R., Rakuasa, H., & Pakniany, Y. (2024). Impact of Climate Change on Increasing Land Surface Temperature in Indonesia: A literature review. Selvicoltura Asean, 1(2), 96–104. https://doi.org/10.70177/jsa.v1i2.1182
Lawson, G., Bertomeu, M., den Herder, M., Kay, S., Deranja, D., De Boeck, A., & Burgess, P. J. (2025). Chapter 10—Agroforestry and net-zero in the European agriculture, forestry and land use sector. In S. Kumar & R. S. Meena (Eds.), Agriculture Toward Net Zero Emissions (pp. 179–203). Academic Press. https://doi.org/10.1016/B978-0-443-13985-7.00011-7
Lucatero, A., & Philpott, S. M. (2024). Biodiversity and Pest Control Services. In S. M. Scheiner (Ed.), Encyclopedia of Biodiversity (Third Edition) (pp. 400–416). Academic Press. https://doi.org/10.1016/B978-0-12-822562-2.00020-7
Machebe, N. S., Ikeh, N. E., Uzochukwu, I. E., & Baiyeri, P. K. (2023). Chapter 13—Livestock—Crop interaction for sustainability of agriculture and environment. In M. Farooq, N. Gogoi, & M. Pisante (Eds.), Sustainable Agriculture and the Environment (pp. 339–394). Academic Press. https://doi.org/10.1016/B978-0-323-90500-8.00011-7
Manson, S., Nekaris, K. A. I., Nijman, V., & Campera, M. (2024). Effect of shade on biodiversity within coffee farms: A meta-analysis. Science of The Total Environment, 914, 169882. https://doi.org/10.1016/j.scitotenv.2024.169882
Millet, C. P., Jeune, W., Guervil, J. S., St Armand, L. A., Amazan, J. F., Duval, G., Jean Louis, R. B., Robert, B., Poncet, V., & Allinne, C. (2025). Ecosystem service bundles associated with agrobiodiversity in agroforestry systems: A case study of two coffee-growing regions of Haiti. Ecosystem Services, 76, 101782. https://doi.org/10.1016/j.ecoser.2025.101782
Mlambo, D., Sebata, A., Chichinye, A., & Mabidi, A. (2024). Chapter 5—Agroforestry and biodiversity conservation. In M. K. Jhariya, R. S. Meena, A. Banerjee, S. Kumar, & A. Raj (Eds.), Agroforestry for Carbon and Ecosystem Management (pp. 63–78). Academic Press. https://doi.org/10.1016/B978-0-323-95393-1.00008-7
Molla, T., Asfaw, Z., Muluneh, M. G., & Worku, B. B. (2023). Diversity of woody species in traditional agroforestry practices in Wondo district, south-central Ethiopia. Heliyon, 9(2), e13549. https://doi.org/10.1016/j.heliyon.2023.e13549
Nair, K. P. (2024). Chapter Five—Microbial fertilization as a preferable choice than synthetic chemical fertilization in modern farming. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 183, pp. 251–306). Academic Press. https://doi.org/10.1016/bs.agron.2023.10.005
Neger, C., Ponce-Calderón, L. P., Manzo-Delgado, L. de L., & López-Madrid, M. A. (2024). Integrated fire management in a tropical biosphere reserve: Achievements and challenges. International Journal of Disaster Risk Reduction, 106, 104447. https://doi.org/10.1016/j.ijdrr.2024.104447
Nwaogu, C., & Cherubin, M. R. (2024). Chapter One—Integrated agricultural systems: The 21st century nature-based solution for resolving the global FEEES challenges. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 185, pp. 1–73). Academic Press. https://doi.org/10.1016/bs.agron.2024.02.003
Ortolan, E., Maciel, E. A., & Forni Martins, V. (2025). Biodiversity in agroforestry systems implemented in tropical ecoregions: A systematic review. Journal of Environmental Management, 382, 125317. https://doi.org/10.1016/j.jenvman.2025.125317
Pandey, V. C., Gajic, G., Lebrun, M., & Mahajan, P. (2024). Chapter 6—Designer cropping systems in phytoremediation programs. In V. C. Pandey, G. Gajic, M. Lebrun, & P. Mahajan (Eds.), Designer Cropping Systems for Polluted Land (pp. 283–340). Elsevier. https://doi.org/10.1016/B978-0-323-95618-5.00006-3
Ponnampalam, E. N., & Holman, B. W. B. (2023). Chapter 22—Sustainability II: Sustainable animal production and meat processing. In F. Toldrá (Ed.), Lawrie’s Meat Science (Ninth Edition) (pp. 727–798). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-85408-5.00001-7
Sharma, U., Sharma, S., Sankhyan, N., Sharma, S., & Sharma, S. (2025). A global review of agroforestry research and policy directions: Addressing ecological and socioeconomic challenges through systematic review and bibliometric analysis. Forest Policy and Economics, 181, 103639. https://doi.org/10.1016/j.forpol.2025.103639
Tack, A. J. M., Burger, H. F., Wood, H., Zewdie, B., Shimales, T., Ayalew, B., Mendesil, E., & Hylander, K. (2025). Bird and bat diversity, herbivory and trade-offs with yield in coffee agroforests in Arabica coffee’s native range. Basic and Applied Ecology, 89, 71–80. https://doi.org/10.1016/j.baae.2025.09.003
Temegne, N. C., Tsoata, E., Nana, A. S., Ngome, A. F., Agendia, A. P., & Youmbi, E. (2024). Chapter 3—Agroforestry and agriculture intensification. In M. K. Jhariya, R. S. Meena, A. Banerjee, S. Kumar, & A. Raj (Eds.), Agroforestry for Carbon and Ecosystem Management (pp. 33–50). Academic Press. https://doi.org/10.1016/B978-0-323-95393-1.00010-5
Vineeta, Shukla, G., & Chakravarty, S. (2025). Chapter 19—Traditional agroforestry systems to complement natural forest diversity. In P. Saikia, A. Kumar, M. L. Khan, & X. Lei (Eds.), Forests for Inclusive and Sustainable Economic Growth (pp. 251–268). Elsevier. https://doi.org/10.1016/B978-0-443-31406-3.00019-9
Authors
Copyright (c) 2025 Regi Fernandez, Eddy Silamat, Caroline Eide

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.