The Feasibility of Converting Palm Oil Waste into Bioenergy in Sumatra and Kalimantan: A Mini-Review
Downloads
Background. The rapid expansion of the palm oil industry in Sumatra and Kalimantan has intensified concerns surrounding environmental degradation, waste accumulation, and inefficient resource utilization. Large volumes of solid and liquid waste such as empty fruit bunches, palm kernel shell, fiber, and palm oil mill effluent remain underutilized despite their substantial bioenergy potential. Assuming that all forms of biomass waste can be feasibly converted into energy risks oversimplifying the technical and regulatory complexities involved.
Purpose. This mini-review aims to critically assess the feasibility of converting palm oil waste into bioenergy by synthesizing recent scientific findings, technological advancements, and sustainability evaluations from studies conducted between 2015 and 2025.
Method. The review employs a qualitative synthesis approach, drawing from peer-reviewed journal articles, government reports, and institutional publications related to waste-to-energy technologies, policy frameworks, and case studies in Indonesia’s palm oil regions. Sources were selected through a systematic screening process using Scopus and ScienceDirect databases.
Results. Findings indicate that several technologies such as anaerobic digestion, pyrolysis, gasification, and direct combustion demonstrate promising conversion efficiencies, particularly for palm oil mill effluent and empty fruit bunches. Nonetheless, high capital costs, inconsistent waste collection systems, technological maintenance barriers, and weak policy enforcement continue to hinder large-scale implementation. Socio-economic conditions, especially in rural Kalimantan, further affect the scalability of bioenergy initiatives.
Conclusion. The review concludes that converting palm oil waste into bioenergy is technically viable but only conditionally feasible when supported by integrated policy frameworks, community-based waste management, and long-term investment strategies. Strengthening cross-sector collaboration remains essential for sustainable implementation.
Abdul Halim, K., Yong, E. L., Li, Y.-Y., & Chavadej, S. (2025). Acidification of palm oil mill effluent with green waste vinegar enhances carboxydotrophic activity during anaerobic digestion. Bioresource Technology Reports, 29, 102019. https://doi.org/10.1016/j.biteb.2025.102019
Ardhyananta, H., Widyastuti, W., Anityasari, M., Wicaksono, S. T., Pratiwi, V. M., Fajarin, R., Zulfa, L. L., Sari, K. N., Safrida, N., & Hamdi, H. A. (2025). Catalytic Cracking of Crude Palm Oil-Based Biorefinery to Biogasoline over ?-Al2O3: Study of Physico-Chemical Properties and Life Cycle Assessment. Journal of Renewable Materials, 13(10), 1913–1934. https://doi.org/10.32604/jrm.2025.02025-0018
Astutiningsih, S., Ospaman, D. A., Handika, N., & Wulandari, D. (2025). A comparative study of the life cycle assessment of natural, recycled, and oil palm shell aggregate concretes. Cleaner Waste Systems, 12, 100397. https://doi.org/10.1016/j.clwas.2025.100397
Azmi, I. S., Hamid, N. N., & Jalil, M. J. (2025). Epoxidation of Hybrid Oleic Acid Derived From Palm Oil and Waste Cooking Oil For Eco-friendly Polyol Production. Recent Innovations in Chemical Engineering, 18(1), 19–25. https://doi.org/10.2174/0124055204338632240925062417
Canizares, D., Cavalcante, T. A. B. B., Filho, P. A. P., & Mauro, M. A. (2025). Crude palm stearin: A green and fast fractionation method to obtain a natural oil structuring agent. Chemical Engineering and Processing - Process Intensification, 216, 110450. https://doi.org/10.1016/j.cep.2025.110450
Dominic, D., & Baidurah, S. (2025). A review of biological processing technologies for palm oil mill waste treatment and simultaneous bioenergy production at laboratory scale, pilot scale and industrial scale applications with technoeconomic analysis. Energy Conversion and Management: X, 26, 100914. https://doi.org/10.1016/j.ecmx.2025.100914
El-Shafay, A. S., Mujtaba, M. A., Riaz, F., & Gad, M. S. (2025). Investigating the role of hybrid binary feedstocks (waste cooking oil, palm oil, and jatropha oil blends) in biodiesel production: Engine performance, emissions, and combustion characteristics. Case Studies in Thermal Engineering, 73, 106688. https://doi.org/10.1016/j.csite.2025.106688
Hantoko, D., Adnan, M. A., Dwijayanto, A., Putra, A. F. P., & Hossain, M. M. (2025). Chemical looping gasification of palm oil mill effluent for hydrogen production – An Aspen plus modeling. Biomass and Bioenergy, 203, 108258. https://doi.org/10.1016/j.biombioe.2025.108258
Hariana, H., Prismantoko, A., Suyatno, S., Ghazidin, H., Kuswa, F. M., Ruhiyat, A. S., Ali Nandar, C. S., Felani, M. I., Pancono, W., Priyanto, U., Kusmiyati, K., & Vuthaluru, H. B. (2025). Evaluation of the potential of replanted rubber wood and palm oil waste with coal as co-combustion fuels in a lab-scale combustion simulator: Ash deposition aspects. Biomass and Bioenergy, 197, 107774. https://doi.org/10.1016/j.biombioe.2025.107774
Hidayatno, A., Setiawan, A. D., Subroto, A., Saheruddin, H., Wardono, S., Romijn, H., Zahari, T. N., Rahman, I., Jafino, B. A., Moeis, A. O., Komarudin, K., Fitriani, A. R., Julio, N., & Zafira, Z. (2025). Exploring the food-versus-fuel debate in Indonesia’s palm oil industry toward sustainability: A model-based policymaking approach. Energy Nexus, 19, 100511. https://doi.org/10.1016/j.nexus.2025.100511
Imran, M., Huangying, S., Hongshuo, Z., Xiaoyun, P., Zhou, R., Guanming, C., & Xianhai, Z. (2025). Genetic and metabolic engineering of oleic acid synthesis pathways in oil palm: Challenges and future prospects. Plant Physiology and Biochemistry, 228, 110288. https://doi.org/10.1016/j.plaphy.2025.110288
Jailani, N., Jaafar, N. R., Azelee, N. I. W., Rahman, R. A., Illias, R. M., & Wahab, M. K. H. A. (2025). Bioconversion of oil palm empty fruit bunches waste into prebiotic xylooligosaccharides using a genetic modified cross-linked endoxylanase aggregates immobilization. Biocatalysis and Agricultural Biotechnology, 64, 103489. https://doi.org/10.1016/j.bcab.2025.103489
Kacaribu, A. A., Aisyah, Y., Febriani, & Darwin. (2025). Development of wastewater treatment methods for palm oil mill effluent (POME): A comprehensive review. Resources Chemicals and Materials, 4(4), 100130. https://doi.org/10.1016/j.recm.2025.100130
Khongkliang, P., Nuchdang, S., Rattanaphra, D., Kingkam, W., Setiabudi, H. D., Wadchasit, P., Kadier, A., Aryanti, P. T. P., & Phalakornkule, C. (2025). Implementing a circular economy approach for biogas, tannin, and treated water in the palm oil industry. Journal of Water Process Engineering, 79, 109032. https://doi.org/10.1016/j.jwpe.2025.109032
Kong, Z. Y., Ang, T. J. N., Ong, H. C., Shi, T., Yeo, C. I., & Yang, A. (2025). Green hydrogen production from oil palm wastes: A techno-economic and environmental perspective. Energy Conversion and Management, 341, 120026. https://doi.org/10.1016/j.enconman.2025.120026
Kurniasih, E., Rahmi, Darusman, & Supardan, M. D. (2025). Enzymatic synthesis of mono-diacylglycerides using off-grade crude palm kernel oil and waste glycerol from biodiesel production. South African Journal of Chemical Engineering, 52, 227–242. https://doi.org/10.1016/j.sajce.2025.02.010
Kuswa, F. M., Putra, H. P., Ghazidin, H., Prismantoko, A., Yarsono, S., Maulana, I., Pancono, W., Widjajanto, T., Asmanto, P., Saptoro, A., Vuthaluru, H. B., & Hariana, H. (2025). Ash deposition characteristics from high temperature co-combustion of oil palm waste with rubber and sengon woods. Biomass and Bioenergy, 200, 107992. https://doi.org/10.1016/j.biombioe.2025.107992
Mas’udah, K. W., Anggoro, D., Nakajima, H., Sapruangnet, R., Astuti, F., Asih, R., & Darminto, D. (2025). Palm oil shell-derived SiO2/hard-carbon-like nanocomposites for a potential application as dual carbon battery electrode. Biomass and Bioenergy, 203, 108332. https://doi.org/10.1016/j.biombioe.2025.108332
Mhadmhan, S., Yoosuk, B., & Lapapong, S. (2025). High-performance biotransformer oil from palm derivatives for low-temperature applications: Green synthesis, properties, and accelerated thermal aging. Journal of Environmental Chemical Engineering, 13(6), 120343. https://doi.org/10.1016/j.jece.2025.120343
Milicevic, D. P. M., Chan, Y. J., Shi, S., & Thangalazhy-Gopakumar, S. (2025). Effect of torrefaction of palm frond on methane yield through anaerobic co-digestion with palm oil mill effluent. Journal of Analytical and Applied Pyrolysis, 192, 107316. https://doi.org/10.1016/j.jaap.2025.107316
Mohammad Taib, M. N. A. (2025). Influence of green fillers from oil palm trunk (Elaeis guineensis) on the thermal stability, tensile performance and morphological properties of reinforced epoxy composites. RSC Advances, 15(53), 45061–45070. https://doi.org/10.1039/d5ra07482g
Mohammed Nadeem, M., Sayem Mozumder, M., Saba, N., Safwan Ismail, A., & Jawaid, M. (2025). Effect of kenaf and oil palm fibers on the mechanical, physical and morphological properties of the bio-epoxy hybrid composites. Journal of Materials Research and Technology, 38, 3472–3481. https://doi.org/10.1016/j.jmrt.2025.08.180
Mono, J. A., Tiaya, E. M., Assona, R. A., Takoumbe, C., Magne, V. C. F., Assiene, O. T. A., Bitete, R. H., & Anafack, S. M. (2025). Impact of the extraction technique on the desorption diffusion theory of Tenera oil palm bunch fibres from Cameroon. Next Research, 2(4), 101050. https://doi.org/10.1016/j.nexres.2025.101050
Mustafa, M. R. U., Gandapur, M. U. S., & Khurshid, H. (2025). Green adsorption of oil and grease from wastewater using oil palm leaves activated carbon. Cleaner Waste Systems, 12, 100330. https://doi.org/10.1016/j.clwas.2025.100330
Nagime, P. V., Chidrawar, V. R., Singh, S., Shafi, S., & Singh, S. (2025). Palm oil mill waste: A review on ecological improvement goals advancement and prospects. Food and Humanity, 5, 100816. https://doi.org/10.1016/j.foohum.2025.100816
Raheem, H. O., Abas, N. F., Shanmugan, S., Ban, C. C., & Tersoo, K. E. (2025). Enhancing the thermal efficiency of unfired laterite bricks stabilized with seashell powder and palm oil fuel ash for sustainable construction. Construction and Building Materials, 496, 143840. https://doi.org/10.1016/j.conbuildmat.2025.143840
Sidabutar, R., Trisakti, B., Irvan, I., Batubara, S. F., Gusty, N. D., Rambe, H. S., Syahputra, Mhd. R., Michael, M., Syaifan, M., Effendi, E. R., Alexander, V., Nabilah, Y., Fath, M. T., Dalimunthe, N. F., Sijabat, M., Syafriandy, S., & Takriff, M. S. (2025). Development of a novel co-composting system for empty fruit bunches using UASB-HCPB fermentor-derived effluent for sustainable palm oil waste management: Design, performance evaluation, and kinetic study. Journal of Hazardous Materials Advances, 18, 100730. https://doi.org/10.1016/j.hazadv.2025.100730
Tabassum, M., Siddique, Md. B. M., Afrouzi, H. N., & Kashem, S. B. A. (2025). A Feasibility Study of Renewable Energy Generation from Palm Oil Waste in Malaysia. Energy Engineering, 122(9), 3433–3457. https://doi.org/10.32604/ee.2025.065955
Taib, M. N. A. M., Salleh, A., Jamaluddin, N. A. N., Rasheed, T., Hussin, M. H., Julkapli, N. M., Saji, V. S., & Saleh, T. A. (2025). A review on recent developments of oil palm solid waste upcycling into green bio-based materials for sustainable building and construction applications. Results in Engineering, 27, 107049. https://doi.org/10.1016/j.rineng.2025.107049
Thanahiranya, P., Sadhukhan, J., Charoensuppanimit, P., Vacharanukrauh, T., Chuetor, S., Chanthanumataporn, M., & Assabumrungrat, S. (2025). Design and assessment of biolubricant production processes utilizing various feedstocks in palm oil-based biodiesel industry. Journal of Cleaner Production, 518, 145949. https://doi.org/10.1016/j.jclepro.2025.145949
Trisakti, B., Sidabutar, R., Irvan, Sinamo, G. C., Ambarita, R., Alexander, V., Michael, M., Nasution, J. A., Nabilah, Y., Daimon, H., & Takriff, M. S. (2025). Enhanced H2S absorption and water recovery using Thiobacillus sp. And Azolla microphylla for zero-waste palm oil mill applications. Case Studies in Chemical and Environmental Engineering, 11, 101173. https://doi.org/10.1016/j.cscee.2025.101173
Unsomsri, N., Chunyok, K., Pakdee, W., Muncharoenporn, P., Koedthong, P., Tawkaew, S., Wiriyasart, S., & Kaewluan, S. (2025). Fuel potential of bio-oil from co-pyrolysis of fresh palm fruit bunches and waste cooking oil sludge: Composition, fuel properties, and carbon distribution analysis. Case Studies in Chemical and Environmental Engineering, 12, 101265. https://doi.org/10.1016/j.cscee.2025.101265
Yusuf, F. R., Suprihatin, S., & Indrasti, N. S. (2025). Improving the environmental performance of palm oil industry through the utilization of empty oil palm bunches as organic fertilizer and biochar for soil amendment. Environmental Challenges, 20, 101185. https://doi.org/10.1016/j.envc.2025.101185


















a