A Mini-Review of Digital Technologies (IoT, AI) for Enhancing Sustainability Monitoring in Indonesian Agriculture and Forestry
Downloads
Background. The integration of digital technologies such as the Internet of Things (IoT) and Artificial Intelligence (AI) into agriculture and forestry holds great potential for enhancing sustainability monitoring, especially in Indonesia, where these sectors are crucial to the economy and environment.
Purpose. The challenges of climate change, deforestation, and inefficient resource use have led to the need for advanced technologies to better manage natural resources and monitor sustainability in these sectors. This mini-review aims to assess the role of IoT and AI in improving sustainability monitoring in Indonesian agriculture and forestry, exploring the benefits, challenges, and future prospects.
Method. A comprehensive review of existing literature, case studies, and reports was conducted to gather data on the applications of IoT and AI in agriculture and forestry in Indonesia. The research examines the current technologies being implemented, their impact on resource efficiency, and the potential for scalability and integration into existing systems.
Results. The findings indicate that IoT-based sensors and AI-driven analytics have significantly improved data collection and decision-making processes, enabling better management of water, soil, and forest resources. However, challenges such as infrastructure limitations, data privacy concerns, and the need for skilled labor remain.
Conclusion. In conclusion, digital technologies such as IoT and AI offer promising solutions for enhancing sustainability monitoring in Indonesia’s agriculture and forestry sectors. While progress is being made, there is a need for further investment in infrastructure, capacity building, and policy development to maximize the impact of these technologies.
Ahmad, I., Zulfiqar, A., Shabbir, M., Khan, J. S., Caliskan, H., & Hong, H. (2024). Advanced sensors, monitoring, and control systems for environmental sustainability. In Smart Cities and Sustainable Manufacturing: Innovations for a Greener Future (pp. 47–55). Elsevier; Scopus. https://doi.org/10.1016/B978-0-443-26474-0.00007-5
Al-Raeei, M. (2024). Artificial intelligence for climate resilience: Advancing sustainable goals in SDGs 11 and 13 and its relationship to pandemics. Discover Sustainability, 5(1). Scopus. https://doi.org/10.1007/s43621-024-00775-5
Anam, I., Arafat, N., Hafiz, M. S., Jim, J. R., Kabir, M. M., & Mridha, M. F. (2024). A systematic review of UAV and AI integration for targeted disease detection, weed management, and pest control in precision agriculture. Smart Agricultural Technology, 9. Scopus. https://doi.org/10.1016/j.atech.2024.100647
Balin, M., Genzano, N., De Petris, S., Perotti, L., Mondino, E. B., & Gianinetto, M. (2025). Monitoring and Mapping Drought Effects on Crops by Geospatial and Remotely Sensed Data. A Critical Overview of Available Open Data Products. In E. Borgogno-Mondino & P. Zamperlin (Eds.), Commun. Comput. Info. Sci.: Vol. 2464 CCIS (pp. 198–210). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-91144-6_13
Bathaei, M. J., Bathaei, Y., Liao, Z., Yazdanmehr, M., Sethi, S. S., Nikolayev, D., Cardoso, F. A., & Boutry, C. M. (2025). Environmental and Ecological Monitoring with Biodegradable Technologies. Advanced Science. Scopus. https://doi.org/10.1002/advs.202511452
Cáceres Ruiz, A. M., Sanches-Pereira, A., & Zaman, A. (2025). Regionalising the circular economy: A three-step integrative review and gap analysis. Cleaner Environmental Systems, 19. Scopus. https://doi.org/10.1016/j.cesys.2025.100371
Chandrakala, D., Ranganathan, C. S., Swarnalatha, E., Karpagalakshmi, R. C., Meenakshi, B., & Subramanian, S. (2024). Enhancing Data Security in Cloud-Based Soil Carbon Sequestration Monitoring Systems Using Random Forest Regression. In R. Chhikara, M. Khurana, S. Mahajan, & Y. Gigras (Eds.), Int. Conf. Intell. Syst. Cybersecur., ISCS. Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/ISCS61804.2024.10581090
da Silva Martins, T., Garcia, K. G. V., Silva, Y. J. A. B., da Silva, M. G., Serpa, S. S. E., Bezerra, R. A., Filho, C. D. T., Cavalcante, R. M., Boechat, C. L., de Araújo Pereira, A. P., & Ortiz Escobar, M. E. O. (2024). Contamination risk by heavy metals and enzymatic stoichiometry in agricultural soils under intense use of pesticides. Environmental Monitoring and Assessment, 196(9). Scopus. https://doi.org/10.1007/s10661-024-12965-9
Dezfooli, F. P., Valadan Zoej, M. J., Mansourian, A., Youssefi, F., & Pirasteh, S. (2025). GEE-based environmental monitoring and phenology correlation investigation using Support Vector Regression. Remote Sensing Applications: Society and Environment, 37. Scopus. https://doi.org/10.1016/j.rsase.2024.101445
Digra, M., Dhir, R., & Sharma, N. (2024). Spatio-temporal analysis and prediction of land use land cover (LULC) change in Wular Lake, Jammu and Kashmir, India. Environmental Monitoring and Assessment, 196(9). Scopus. https://doi.org/10.1007/s10661-024-12928-0
Do?an Demir, A., Demir, Y., & ?ah?n, Ü. (2025). Contamination and potential mobility assessment of potentially toxic elements (PTEs) in soils in relationship with different geographic factors and soil erosion class. Environmental Geochemistry and Health, 47(11). Scopus. https://doi.org/10.1007/s10653-025-02817-x
Indraja, G., Aashi, A., & Vema, V. K. (2024). Spatial and temporal classification and prediction of LULC in Brahmani and Baitarni basin using integrated cellular automata models. Environmental Monitoring and Assessment, 196(2). Scopus. https://doi.org/10.1007/s10661-023-12289-0
Infant, D. M. D., & Priyanka, E. B. (2025). Enabling Smart Cities: A Comprehensive Study of IoT and IIoT Integration in Diverse Industries. In Deep Learning and Blockchain Technology for Smart and Sustainable Cities (pp. 89–114). CRC Press; Scopus. https://doi.org/10.1201/9781003476047-6
Kaliraj, S., Anoop Krishnan, K. A., Devaraj, D., Kasivisvanathan, K. S., & Chandrasekar, N. (2025). Evaluating soil erosion patterns and potential impacts of rainfall and vegetation index in the semi-arid river basin of southern India. Environmental Monitoring and Assessment, 197(8). Scopus. https://doi.org/10.1007/s10661-025-14277-y
Kaur, A., Bhatt, D. P., & Raja, L. (2024). Developing a Hybrid Irrigation System for Smart Agriculture Using IoT Sensors and Machine Learning in Sri Ganganagar, Rajasthan. Journal of Sensors, 2024. Scopus. https://doi.org/10.1155/2024/6676907
Kayumba, P. M., Chen, Y., Mindje, M., Ali, S., Mind’je, R., DeFreese, M., Nyirambangutse, B., & Hu, Y. (2025). Asian Dryland Ecohealth Progress for Land Degradation Neutrality. Journal of Remote Sensing (United States), 5. Scopus. https://doi.org/10.34133/remotesensing.0897
Maya Moreshwar Meshram, S., Adla, S., Jourdin, L., & Pande, S. (2024). Review of low-cost, off-grid, biodegradable in situ autonomous soil moisture sensing systems: Is there a perfect solution? Computers and Electronics in Agriculture, 225. Scopus. https://doi.org/10.1016/j.compag.2024.109289
Morchid, A., Jebabra, R., Khalid, H. M., El Alami, R., Qjidaa, H., & Jamil, M. (2024). IoT-based smart irrigation management system to enhance agricultural water security using embedded systems, telemetry data, and cloud computing. Results in Engineering, 23. Scopus. https://doi.org/10.1016/j.rineng.2024.102829
Murgod, S., Kabbur, T., Matte, B., Mujumdar, V., & Raikar, M. M. (2025). IoT-Driven Smart Farming with Machine Learning for Sustainable Food Systems. In A. K. Singh, K. C. Santosh, J. Kumar, D. Saxena, & A. Makkar (Eds.), Procedia Comput. Sci. (Vol. 260, pp. 552–560). Elsevier B.V.; Scopus. https://doi.org/10.1016/j.procs.2025.03.233
Nazrin, M., & Arifin, A. (2025). Soil quality dynamics under tropical land-use change: Implications for sustainable management. Environmental Monitoring and Assessment, 197(12). Scopus. https://doi.org/10.1007/s10661-025-14769-x
Nesa, M. M., Propa, S. M., Sen, S., & Abdullah, H. M. (2024). Land Use Change and Soil Erosion: Challenges and Way Forward to Management. In Climate Change and Soil-Water-Plant Nexus: Agriculture and Environment (pp. 547–571). Springer Nature; Scopus. https://doi.org/10.1007/978-981-97-6635-2_18
Omenaka, C. P., Khan, A., Qadri, S., Hassan, Q., Mahmood, K., & Hanan, A. (2024). Feature Reduction Based Cotton Leaf Curl Disease Detection. IEEE Int. Conf. Agrosystem Eng., Technol. Appl.: Integr. Smart Farming Food Secur. a Sustain. Future, AGRETA, 101–106. Scopus. https://doi.org/10.1109/AGRETA61912.2024.10949009
Pandiarajan, R., Sundarrajan, R., Alagupandi, P., Ajaykanna, U., Aslam Thowfik, S., & Ganesh, A. (2025). BOTANZ: Improving Agricultural Efficiency Through Random Forest Algorithms. Proc. Int. Conf. Intell. Comput. Control Syst., ICICCS, 1011–1016. Scopus. https://doi.org/10.1109/ICICCS65191.2025.10985293
Raptopoulos, D., Betsi, P.-C., Manikas, N., Borodina, I., & Konstantopoulou, M. (2025). Mating Disruption of Helicoverpa armigera (Lepidoptera: Noctuidae) Using Yeast-Derived Pheromones in Cotton Fields. Insects, 16(5). Scopus. https://doi.org/10.3390/insects16050523
Su, Z., Yi, Y., & Fan, Y. (2025). Research and Application of Soil Health Monitoring and Analysis System for Mulberry Planting based on IoT and WebGIS. ACM Int. Conf. Proc. Ser., 18–26. Scopus. https://doi.org/10.1145/3731867.3731871
Tripathi, S., & Trigunait, R. (2025). Achieving sustainable practices: Environmental sustainability and semi-supervised learning for carbon footprint reduction. Environment, Development and Sustainability. Scopus. https://doi.org/10.1007/s10668-024-05578-2
Vos, J., Alessandrini, M., Trevisan, M., Pii, Y., Mazzetto, F., Orzes, G., & Cesco, S. (2025). One Health approach: Addressing data challenges and unresolved questions in agriculture. Science of the Total Environment, 977. Scopus. https://doi.org/10.1016/j.scitotenv.2025.179312
Whig, P., Nadikattu, R. R., Gupta, S. K., & Kulkarni, S. (2025). Application of AI for Natural Source Management. In Artificial Intelligence-Driven Models for Environmental Management (pp. 101–119). wiley; Scopus. https://doi.org/10.1002/9781394282555.ch4
Zabasta, A., Patlins, A., Kunicina, N., & Grunde, U. (2025). Enhancing Hive Monitoring and Sustainability through Video Recognition and Environmental Analysis. In D. Navakauskas, A. Romanovs, D. Plonis, & M. Narigina (Eds.), IEEE Workshop Adv. Inf., Electron. Electr. Eng., AIEEE - Proc. Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/AIEEE66149.2025.11050858
Zhang, S., Dai, H., Chen, C., Wei, J., Guan, Z., & Niu, X. (2025). Prediction of regional cropland soil organic carbon content and distribution using deep learning: A case study of the Northeast China Plain. Environmental Monitoring and Assessment, 197(10). Scopus. https://doi.org/10.1007/s10661-025-14622-1
Zhao, J., Gu, J., & Wang, Y. (2025). Evolution and Drivers of Wetland Types in China’s Coastal Wetlands (1990-2020). In S. Hu, X. Ye, H. Lin, & Q. Guan (Eds.), Int. Conf. Geoinformatics. IEEE Computer Society; Scopus. https://doi.org/10.1109/Geoinformatics67279.2025.11173525


















a