Coherent Coupling Between a Superconducting Qubit and a Spin Ensemble in a Hybrid Quantum System for Microwave-to-Optical Transduction

Raul Gomez (1), Thiago Rocha (2), Luis Santos (3)
(1) Universidade Federal Minas Gerais, Brazil,
(2) Universidade Federal Bahia, Brazil,
(3) University of the Philippines Diliman, Philippines

Abstract

The coupling of superconducting qubits with spin ensembles has emerged as a promising solution to bridge the microwave-optical frequency gap in hybrid quantum systems. These systems are crucial for advancing quantum communication, quantum networks, and integrated quantum technologies. However, achieving coherent coupling between these two platforms remains a significant challenge due to the differences in their operational frequency regimes and their susceptibility to decoherence. This research aims to explore the coherent coupling between a superconducting qubit and a spin ensemble, specifically focusing on its potential for efficient microwave-to-optical transduction. The primary objective of this study is to develop a hybrid quantum system that enables the transfer of quantum information between microwave and optical domains with minimal loss of coherence. Experimental and theoretical approaches were used, involving superconducting qubits and nitrogen-vacancy (NV) centers in diamonds as the spin ensemble. The results demonstrate that the coupling mechanism is efficient, achieving high transduction efficiencies and long coherence times, particularly at optimized coupling strengths. These findings suggest that the hybrid system can be used for scalable quantum communication systems, facilitating quantum information transfer across different frequency domains. In conclusion, this study provides a robust method for microwave-to-optical transduction, opening new avenues for quantum network development and hybrid quantum technologies.

Full text article

Generated from XML file

References

Algarni, M., Berrada, K., & Abdel-khalek, S. (2025). Quantum correlations and quantum fisher information for a pair of superconducting qubits interacting with a quantized field under time-varying coupling. Applied Physics B: Lasers and Optics, 131(11). Scopus. https://doi.org/10.1007/s00340-025-08571-3

Aljuaydi, F., Jaradat, E. K., & Alotaibi, A. M. (2026). Robustness and sensitivity of quantumness in superconducting qubit–nitrogen-vacancy center qutrit system under dephasing. Modern Physics Letters A, 41(1). Scopus. https://doi.org/10.1142/S0217732325502116

Blain, B., Marchegiani, G., Amico, L., & Catelani, G. (2025). Suppressing chaos with mixed superconducting-qubit devices. Physical Review Applied, 24(1). Scopus. https://doi.org/10.1103/pl85-jd9y

Chen, P., Xu, X., Zhang, Y., Zeng, L., Tang, J., Song, H., Wang, Y., Zhou, Q., Guo, G., & Deng, G. (2025). Progress and Challenges in Optomechanical Quantum Transducers (Invited). Guangxue Xuebao/Acta Optica Sinica, 45(20). Scopus. https://doi.org/10.3788/AOS251439

Diniz, C. M., Damas, G. G., de Almeida, N. G., Villas-Bôas, C. J., & Neto, G. D. D. M. (2025). Quantum Features of the Thermal Two-Qubit Quantum Rabi Model in Ultra- and Deep-Strong Regimes. Advanced Quantum Technologies, 8(10). Scopus. https://doi.org/10.1002/qute.202500250

Elghaayda, S., Ali, A., Al-Kuwari, S., Czerwinski, A., Mansour, M., & Haddadi, S. (2025). Performance of a Superconducting Quantum Battery. Advanced Quantum Technologies, 8(9). Scopus. https://doi.org/10.1002/qute.202400651

Günzler, S., Beck, J., Rieger, D., Gosling, N., Zapata, N., Field, M., Geisert, S., Bacher, A., Hohmann, J. K., Spiecker, M., Wernsdorfer, W., & Pop, I. M. (2025). Spin environment of a superconducting qubit in high magnetic fields. Nature Communications, 16(1). Scopus. https://doi.org/10.1038/s41467-025-65528-y

Hadipour, M. (2025). Quantum Speed Limits in Qubit Dynamics Driven by Bistable Random Telegraph Noise: From Markovian to Non-Markovian Regimes. International Journal of Theoretical Physics, 64(11). Scopus. https://doi.org/10.1007/s10773-025-06192-2

He, Y., & Zhang, Y.-X. (2025). Quantum State Transfer via a Multimode Resonator. Physical Review Letters, 134(2). Scopus. https://doi.org/10.1103/PhysRevLett.134.023602

Heya, K., Phung, T., Malekakhlagh, M., Steiner, R., Turchetti, M., Shanks, W., Mamin, J., Lu, W.-S., Kandel, Y. P., Sundaresan, N., & Orcutt, J. (2025). Randomized Benchmarking of a Remote cnot Gate Via a Meter-Scale Microwave Link. Physical Review Letters, 135(20). Scopus. https://doi.org/10.1103/xx24-r7q6

Jin, X. Y., Parrott, Z., Cicak, K., Kotler, S., Lecocq, F., Teufel, J., Aumentado, J., Kapit, E., & Simmonds, R. W. (2025). Superconducting architecture demonstrating fast, tunable high-fidelity CZ gates with parametric control of ZZ coupling. Physical Review Applied, 24(6). Scopus. https://doi.org/10.1103/kmls-lgp5

Joliffe, M., Vorobyov, V., & Wrachtrup, J. (2025). Readout of strongly coupled NV center-pair spin states with deep neural networks. Quantum Science and Technology, 10(4). Scopus. https://doi.org/10.1088/2058-9565/adf2d6

Khadim, B., Majid, A., Belgibayeva, A., Jin, Y., Bulut, N., & Alkhedher, M. (2026). Quantum batteries: Unlocking the future of high-tech energy storage. Journal of Energy Storage, 141. Scopus. https://doi.org/10.1016/j.est.2025.119249

Li, L., Ruan, X., Zhao, S.-L., Chen, B.-J., Liang, G.-H., Liu, Y., Deng, C.-L., Yuan, W.-P., Song, J.-C., Liu, Z.-H., Li, T.-M., Shi, Y.-H., Zhang, H., Han, M., Guo, J.-M., Guo, X.-Y., Zhao, Q., Zhang, J., Song, P., … Zheng, D. (2025). Quantum acoustics with superconducting qubits in the multimode transition-coupling regime. Physical Review Applied, 24(6). Scopus. https://doi.org/10.1103/hxvq-vvnv

Liu, Y., Cui, T., & Li, D. (2025). Superconductivity in subnanometer M o6 S6 nanowires. Physical Review B, 111(19). Scopus. https://doi.org/10.1103/PhysRevB.111.195401

Marinelli, B., Rubin, A. H., Norman, V. A., Yang, S., Naik, R., Niedzielski, B. M., Kim, D. K., Das, R., Schwartz, M. E., Santiago, D. I., Spitzer, C., Siddiqi, I., & Radulaski, M. (2025). Photon blockade in a Tavis-Cummings system. Physical Review Applied, 24(4). Scopus. https://doi.org/10.1103/st87-3cxz

Martín-Vázquez, G., Tolppanen, T., & Silveri, M. (2025). Passive leakage removal unit based on a disordered transmon array. Physical Review A, 112(3), 1–23. Scopus. https://doi.org/10.1103/bxqs-y662

Rashidi, A., Ahadi, S., & Stemmer, S. (2025). Self-Field-Induced Josephson Diode Effect. Nano Letters, 25(26), 10544–10548. Scopus. https://doi.org/10.1021/acs.nanolett.5c02198

Roy, F. A., Romeiro, J. H., Koch, L., Tsitsilin, I., Schirk, J., Glaser, N. J., Bruckmoser, N., Singh, M., Haslbeck, F. X., Huber, G. B. P., Krylov, G., Marx, A., Pfeiffer, F., Schneider, C. M. F., Schweizer, C., Wallner, F., Bunch, D., Richard, L., Sodergren, L., … Filipp, S. (2025). Parity-dependent state transfer for direct entanglement generation. Nature Communications, 16(1). Scopus. https://doi.org/10.1038/s41467-025-57818-2

Sanches, J. E., Lustosa, L. T., Ricco, L. S., Sigurðsson, H., de Souza, M., Figueira, M. S., Marinho, E., & Seridonio, A. C. (2025). Spin-exchange induced spillover on poor man’s Majoranas in minimal Kitaev chains. Journal of Physics Condensed Matter, 37(20). Scopus. https://doi.org/10.1088/1361-648X/adce6a

Schirk, J., Wallner, F., Huang, L., Tsitsilin, I., Bruckmoser, N., Koch, L., Bunch, D., Glaser, N. J., Huber, G. B. P., Knudsen, M., Krylov, G., Marx, A., Pfeiffer, F., Richard, L., Roy, F. A., Romeiro, J. H., Singh, M., Sodergren, L., Dionis, E., … Filipp, S. (2025). Subharmonic Control of a Fluxonium Qubit via a Purcell-Protected Flux Line. PRX Quantum, 6(3). Scopus. https://doi.org/10.1103/yx15-jyl7

Schneeloch, J., Sheridan, E., Smith, A. M., Tison, C. C., Campbell, D. L., LaHaye, M. D., Fanto, M. L., & Alsing, P. M. (2025). Principles for optimizing quantum transduction in piezo-optomechanical systems. Physical Review A, 111(5). Scopus. https://doi.org/10.1103/PhysRevA.111.052605

Semião, F. L., & Keller, M. (2025). Resonator-assisted quantum transduction between superconducting qubits and trapped atomic systems via Rydberg levels. Physical Review Research, 7(3). Scopus. https://doi.org/10.1103/j4bk-tvhc

Sheng, Z., Li, W., & Shuai, Z. (2025). Quantum-computational chemistry in noisy intermediate-scale quantum era: TenCirChem and its application. Chinese Science Bulletin, 70(34), 5792–5809. Scopus. https://doi.org/10.1360/TB-2024-1150

Shiba, S., Tamate, S., Spring, P. A., Dote, A., Kouma, N., Doi, Y., Nakamura, Y., & Sato, S. (2025). S-Parameter-Based Simulation Technique and Crosstalk Suppression for Large-Scale Superconducting Quantum-Computing Chip Design. IEEE MTT S Int Microwave Symp Dig, 1071–1074. Scopus. https://doi.org/10.1109/IMS40360.2025.11104008

Torras-Coloma, A., Cozzolino, L., Gómez-Del-Pulgar-Martínez, A., Bertoldo, E., & Forn-Díaz, P. (2025). Superinductor-based ultrastrong coupling in a superconducting circuit. Applied Physics Letters, 127(21). Scopus. https://doi.org/10.1063/5.0293790

Tripathi, V., Goss, N., Vezvaee, A., Nguyen, L. B., Siddiqi, I., & Lidar, D. A. (2025). Qudit Dynamical Decoupling on a Superconducting Quantum Processor. Physical Review Letters, 134(5). Scopus. https://doi.org/10.1103/PhysRevLett.134.050601

Valentini, M., Seoane Souto, R. S., Borovkov, M., Krogstrup, P., Meir, Y., Leijnse, M., Danon, J., & Katsaros, G. (2025). Subgap transport in superconductor-semiconductor hybrid islands: Weak and strong coupling regimes. Physical Review Research, 7(2). Scopus. https://doi.org/10.1103/PhysRevResearch.7.023022

Vasil’ev, P. P. (2025). Superradiant quantum phase transition in a semiconductor at room temperature: Myth or reality? Physics-Uspekhi, 68(5), 525–531. Scopus. https://doi.org/10.3367/UFNe.2024.10.039772

Wang, S.-P., Mercurio, A., Ridolfo, A., Wang, Y., Chen, M., Wang, W., Liu, Y., Sun, H., Li, T., Nori, F., Savasta, S., & You, J. Q. (2025). Strong coupling between a single-photon and a two-photon Fock state. Nature Communications, 16(1). Scopus. https://doi.org/10.1038/s41467-025-63783-7

Zhang, T., & Zhao, C. (2025). Realization of two-qubit gates operations in asymmetric superconducting circuits. Indian Journal of Physics, 99(10), 3827–3835. Scopus. https://doi.org/10.1007/s12648-025-03598-w

Zhao, J., Yan, Z., Kong, J., Wang, Y., Xiong, K., Qi, C., & Wang, Z. (2025). Strong electronic correlation-driven topological superconductivity and exotic transport properties in ZrCl monolayer. Materials Today Physics. Scopus. https://doi.org/10.1016/j.mtphys.2025.101888

Zheng, J., Deng, C., & Liao, Q. (2025). Probe Absorption Properties and Kerr Effect of Superconducting Qubit Coupled to Mechanical Resonators. Laser and Optoelectronics Progress, 62(11). Scopus. https://doi.org/10.3788/LOP250495

Authors

Raul Gomez
raulgomez@gmail.com (Primary Contact)
Thiago Rocha
Luis Santos
Gomez, R., Rocha, T., & Santos, L. (2026). Coherent Coupling Between a Superconducting Qubit and a Spin Ensemble in a Hybrid Quantum System for Microwave-to-Optical Transduction. Journal of Tecnologia Quantica, 2(6), 314–327. https://doi.org/10.70177/quantica.v2i6.3198

Article Details