A Novel Quantum Algorithm for Solving Non-Linear Differential Equations with Potential Exponential Speedup

Loso Judijanto (1), Thiago Rocha (2), Rafaela Lima (3)
(1) IPOSS Jakarta, Indonesia,
(2) Universidade Federal Bahia, Brazil,
(3) Universidade Federal Paraná, Brazil

Abstract

Non-linear differential equations constitute the mathematical foundation of complex physical, biological, and engineering systems, yet classical numerical solvers often suffer from prohibitive computational costs as system dimensionality increases. Quantum computation offers a promising pathway for accelerating such calculations, although existing quantum algorithms primarily address linear differential models and fail to generalize efficiently to non-linear regimes. This study aims to develop and evaluate a novel quantum algorithm designed specifically to approximate solutions to non-linear differential equations with a potential exponential speedup over classical methods. The proposed approach integrates a variational quantum ansatz with non-linear Hamiltonian embedding and amplitude encoding to capture non-linearity within a tractable quantum framework. Simulations were conducted on noisy intermediate-scale quantum (NISQ) models and idealized quantum circuits to benchmark accuracy, convergence behavior, and computational scaling. The results indicate that the algorithm achieves stable convergence across representative non-linear systems while demonstrating a significant reduction in computational complexity relative to classical solvers, particularly for high-dimensional models. The study concludes that the proposed algorithm represents a viable direction for quantum-enhanced numerical analysis and may serve as a foundation for future quantum solvers targeting complex dynamical systems.


 

Full text article

Generated from XML file

References

Carrera Vazquez, A., & Woerner, S. (2021). Efficient State Preparation for Quantum Amplitude Estimation. Physical Review Applied, 15(3). Scopus. https://doi.org/10.1103/PhysRevApplied.15.034027

Chen, M., Yu, C.-H., Guo, G., & Lin, S. (2023). Faster quantum ridge regression algorithm for prediction. International Journal of Machine Learning and Cybernetics, 14(1), 117–124. Scopus. https://doi.org/10.1007/s13042-022-01526-6

Chia, N.-H., Gilyen, A., Li, T., Lin, H.-H., Tang, E., & Wang, C. (2020). Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. In K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, & J. Chuzhoy (Eds.), Proc. Annu. ACM Symp. Theory Comput. (pp. 387–400). Association for Computing Machinery acmhelp@acm.org; Scopus. https://doi.org/10.1145/3357713.3384314

Delgado, I. P., Markaida, B. G., Ali, A. M., & de Leceta, A. M. F. (2023). QUBO Resolution of the Job Reassignment Problem. IEEE Conf Intell Transport Syst Proc ITSC, 4847–4852. Scopus. https://doi.org/10.1109/ITSC57777.2023.10422467

Du, W., Vary, J. P., Zhao, X., & Zuo, W. (2021). Quantum simulation of nuclear inelastic scattering. Physical Review A, 104(1). Scopus. https://doi.org/10.1103/PhysRevA.104.012611

Guseynov, N. M., Zhukov, A. A., Pogosov, W. V., & Lebedev, A. V. (2023). Depth analysis of variational quantum algorithms for the heat equation. Physical Review A, 107(5). Scopus. https://doi.org/10.1103/PhysRevA.107.052422

He, X. (2020). Quantum correlation alignment for unsupervised domain adaptation. Physical Review A, 102(3). Scopus. https://doi.org/10.1103/PhysRevA.102.032410

Kerenidis, I., Landman, J., Luongo, A., & Prakash, A. (2019). Q-means: A quantum algorithm for unsupervised machine learning. Adv. Neural Inf. Proces. Syst., 32. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083140670&partnerID=40&md5=ccb68b9f4a9e6dfc76ef2f5ef589152f

Kubo, K., Miyamoto, K., Mitarai, K., & Fujii, K. (2023). Pricing Multiasset Derivatives by Variational Quantum Algorithms. IEEE Transactions on Quantum Engineering, 4. Scopus. https://doi.org/10.1109/TQE.2023.3269525

Li, Y. C., Zhou, R.-G., Xu, R. Q., Hu, W. W., & Fan, P. (2021). Quantum algorithm for the nonlinear dimensionality reduction with arbitrary kernel. Quantum Science and Technology, 6(1). Scopus. https://doi.org/10.1088/2058-9565/abbe66

Li, Z.-T., Meng, F.-X., Yu, X.-T., & Zhang, Z.-C. (2022). Quantum algorithm for Laplacian eigenmap via Rayleigh quotient iteration. Quantum Information Processing, 21(1). Scopus. https://doi.org/10.1007/s11128-021-03347-y

Lu, Y., Zhang, S., Zhang, K., Chen, W., Shen, Y., Zhang, J., Zhang, J.-N., & Kim, K. (2019). Global entangling gates on arbitrary ion qubits. Nature, 572(7769), 363–367. Scopus. https://doi.org/10.1038/s41586-019-1428-4

Meng, F.-X., Yu, X.-T., & Zhang, Z.-C. (2020). Improved quantum algorithm for MMSE-based massive MIMO uplink detection. Quantum Information Processing, 19(8). Scopus. https://doi.org/10.1007/s11128-020-02768-5

Ram, A., Koukoutsis, E., Hizanidis, K., Vahala, G., Soe, M., & Vahala, L. (2023). Quantum Information Science and Wave Propagation in Plasmas. Int. Conf. Electromagn. Adv. Appl., ICEAA, 503. Scopus. https://doi.org/10.1109/ICEAA57318.2023.10297667

Sager, L. M., Smart, S. E., & Mazziotti, D. A. (2020). Preparation of an exciton condensate of photons on a 53-qubit quantum computer. Physical Review Research, 2(4). Scopus. https://doi.org/10.1103/PhysRevResearch.2.043205

Shao, C., & Xiang, H. (2020). Row and column iteration methods to solve linear systems on a quantum computer. Physical Review A, 101(2). Scopus. https://doi.org/10.1103/PhysRevA.101.022322

Skoric, L., Browne, D. E., Barnes, K. M., Gillespie, N. I., & Campbell, E. T. (2023). Parallel window decoding enables scalable fault tolerant quantum computation. Nature Communications, 14(1). Scopus. https://doi.org/10.1038/s41467-023-42482-1

Soni, K. K., & Malviya, A. K. (2021). Design and Analysis of Pattern Matching Algorithms Based on QuRAM Processing. Arabian Journal for Science and Engineering, 46(4), 3829–3851. Scopus. https://doi.org/10.1007/s13369-020-05310-y

Tang, W., Tomesh, T., Suchara, M., Larson, J., & Martonosi, M. (2021). CutQC: Using small Quantum computers for large Quantum circuit evaluations. Int Conf Archit Support Program Lang Oper Syst ASPLOS, 473–486. Scopus. https://doi.org/10.1145/3445814.3446758

Vahala, G., Soe, M., & Vahala, L. (2020). Qubit unitary lattice algorithm for spin-2 Bose-Einstein condensates: II - vortex reconnection simulations and non-Abelain vortices. Radiation Effects and Defects in Solids, 175(1–2), 113–119. Scopus. https://doi.org/10.1080/10420150.2020.1718136

Vazquez, A. C., Hiptmair, R., & Woerner, S. (2022). Enhancing the Quantum Linear Systems Algorithm Using Richardson Extrapolation. ACM Transactions on Quantum Computing, 3(1). Scopus. https://doi.org/10.1145/3490631

Zhang, H., Chen, T., Pan, N., & Zhang, X. (2022). Electric-Circuit Simulation of Quantum Fast Hitting with Exponential Speedup. Advanced Quantum Technologies, 5(4). Scopus. https://doi.org/10.1002/qute.202100143

Authors

Loso Judijanto
losojudijantobumn@gmail.com (Primary Contact)
Thiago Rocha
Rafaela Lima
Judijanto, L., Rocha, T., & Lima, R. (2025). A Novel Quantum Algorithm for Solving Non-Linear Differential Equations with Potential Exponential Speedup. Journal of Tecnologia Quantica, 2(4), 187–198. https://doi.org/10.70177/quantica.v2i4.2792

Article Details

Most read articles by the same author(s)