Error Correction Codes for Fault-Tolerant Quantum Computation in Superconducting Qubit Architectures
Abstract
Fault-tolerant quantum computation remains a central challenge in superconducting qubit architectures, where decoherence, crosstalk, and gate infidelities significantly degrade computational reliability. Although quantum error correction (QEC) codes are widely assumed to provide scalable protection, their practical performance depends critically on hardware-specific noise characteristics that are often underexamined. This study aims to evaluate the effectiveness of leading QEC codes specifically the surface code, Bacon-Shor code, and low-density parity-check (LDPC) quantum codes when implemented on contemporary superconducting qubit platforms. A simulation-based methodological approach is employed, integrating stochastic noise modeling, syndrome extraction analysis, and threshold estimation using density-matrix simulations calibrated with experimentally reported parameters. The results indicate that while the surface code maintains the highest threshold under realistic two-qubit gate fidelities, LDPC-based schemes exhibit superior logical qubit compression but suffer from decoding overhead that limits near-term applicability. The study also identifies parameter regimes where Bacon-Shor codes offer competitive performance due to their reduced measurement complexity. The findings suggest that no single QEC code uniformly outperforms others; instead, code selection must be matched to hardware-specific noise anisotropy and architectural constraints. The research concludes that optimizing QEC for superconducting qubits requires hybrid design strategies that integrate code efficiency with architecture-aware gate scheduling.
Full text article
References
Acharya, R., Aleiner, I., Allen, R., Andersen, T. I., Ansmann, M., Arute, F., Arya, K., Asfaw, A., Atalaya, J., Babbush, R., Bacon, D., Bardin, J. C., Basso, J., Bengtsson, A., Boixo, S., Bortoli, G., Bourassa, A., Bovaird, J., Brill, L., … Zhu, N. (2023). Suppressing quantum errors by scaling a surface code logical qubit. Nature, 614(7949), 676–681. Scopus. https://doi.org/10.1038/s41586-022-05434-1
Andersen, T. I., Lensky, Y. D., Kechedzhi, K., Drozdov, I. K., Bengtsson, A., Hong, S., Morvan, A., Mi, X., Opremcak, A., Acharya, R., Allen, R., Ansmann, M., Arute, F., Arya, K., Asfaw, A., Atalaya, J., Babbush, R., Bacon, D., Bardin, J. C., … Roushan, P. (2023). Non-Abelian braiding of graph vertices in a superconducting processor. Nature, 618(7964), 264–269. Scopus. https://doi.org/10.1038/s41586-023-05954-4
Battistel, F., Chamberland, C., Johar, K., Overwater, R. W. J., Sebastiano, F., Skoric, L., Ueno, Y., & Usman, M. (2023). Real-time decoding for fault-tolerant quantum computing: Progress, challenges and outlook. Nano Futures, 7(3). Scopus. https://doi.org/10.1088/2399-1984/aceba6
Cai, X., Zhou, B., Wu, Y., Li, S., Dong, Y., Feng, J., & Xiong, K. (2023). Scaling superconducting quantum chip with highly integratable quantum building blocks. Superconductor Science and Technology, 36(8). Scopus. https://doi.org/10.1088/1361-6668/acdafe
Chapman, B. J., de Graaf, S. J., Xue, S. H., Zhang, Y., Teoh, J., Curtis, J. C., Tsunoda, T., Eickbusch, A., Read, A. P., Koottandavida, A., Mundhada, S. O., Frunzio, L., Devoret, M. H., Girvin, S. M., & Schoelkopf, R. J. (2023). High-On-Off-Ratio Beam-Splitter Interaction for Gates on Bosonically Encoded Qubits. PRX Quantum, 4(2). Scopus. https://doi.org/10.1103/PRXQuantum.4.020355
Chen, L., Li, H.-X., Lu, Y., Warren, C. W., KriŽan, C. J., Kosen, S., Rommel, M., Ahmed, S., Osman, A., Biznárová, J., Fadavi Roudsari, A. F., Lienhard, B., Caputo, M., Grigoras, K., Grönberg, L., Govenius, J., Kockum, A. F., Delsing, P., Bylander, J., & Tancredi, G. (2023). Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier. Npj Quantum Information, 9(1). Scopus. https://doi.org/10.1038/s41534-023-00689-6
Chen, W., Zhang, S., Zhang, J., Su, X., Lu, Y., Zhang, K., Qiao, M., Li, Y., Zhang, J.-N., & Kim, K. (2023). Error-mitigated quantum simulation of interacting fermions with trapped ions. Npj Quantum Information, 9(1). Scopus. https://doi.org/10.1038/s41534-023-00784-8
Dodge, K., Liu, Y., Klots, A. R., Cole, B., Shearrow, A., Senatore, M., Zhu, S., Ioffe, L. B., McDermott, R., & Plourde, B. L. T. (2023). Hardware Implementation of Quantum Stabilizers in Superconducting Circuits. Physical Review Letters, 131(15). Scopus. https://doi.org/10.1103/PhysRevLett.131.150602
Etxezarreta Martinez, J., Fuentes, P., deMarti iOlius, A., Garcia-Frias, J., Fonollosa, J. R., & Crespo, P. M. (2023). Multiqubit time-varying quantum channels for NISQ-era superconducting quantum processors. Physical Review Research, 5(3). Scopus. https://doi.org/10.1103/PhysRevResearch.5.033055
Fischer, L. E., Chiesa, A., Tacchino, F., Egger, D. J., Carretta, S., & Tavernelli, I. (2023). Universal Qudit Gate Synthesis for Transmons. PRX Quantum, 4(3). Scopus. https://doi.org/10.1103/PRXQuantum.4.030327
Girvin, S. M. (2023). Introduction to quantum error correction and fault tolerance. SciPost Physics Lecture Notes, 70. Scopus. https://doi.org/10.21468/SciPostPhysLectNotes.70
Harper, R., & Flammia, S. T. (2023). Learning Correlated Noise in a 39-Qubit Quantum Processor. PRX Quantum, 4(4). Scopus. https://doi.org/10.1103/PRXQuantum.4.040311
He, X. L., Lu, Y., Bao, D. Q., Xue, H., Jiang, W. B., Wang, Z., Fadavi Roudsari, A. F., Delsing, P., Tsai, J. S., & Lin, Z. R. (2023). Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator. Nature Communications, 14(1). Scopus. https://doi.org/10.1038/s41467-023-42057-0
Kristensen, L. B., Kjaergaard, M., Andersen, C. K., & Zinner, N. T. (2023). Hybrid quantum error correction in qubit architectures. Physical Review A, 108(2). Scopus. https://doi.org/10.1103/PhysRevA.108.022403
Lecompte, T., Qi, F., Yuan, X., Tzeng, N.-F., Najafi, M. H., & Peng, L. (2023). Machine-Learning-Based Qubit Allocation for Error Reduction in Quantum Circuits. IEEE Transactions on Quantum Engineering, 4. Scopus. https://doi.org/10.1109/TQE.2023.3301899
Mariani, A., Cardani, L., Casali, N., Cruciani, A., Grassellino, A., Pettinacci, V., van Zanten, D., & Vignati, M. (2023). Mitigation of Cosmic Rays-Induced Errors in Superconducting Quantum Processors. In H. Muller, Y. Alexev, A. Delgado, & G. Byrd (Eds.), Proc. - IEEE Int. Conf. Quantum Comput. Eng., QCE (Vol. 1, pp. 1389–1393). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE57702.2023.00157
Milul, O., Guttel, B., Goldblatt, U., Hazanov, S., Joshi, L. M., Chausovsky, D., Kahn, N., Çiftyürek, E., Lafont, F., & Rosenblum, S. (2023). Superconducting Cavity Qubit with Tens of Milliseconds Single-Photon Coherence Time. PRX Quantum, 4(3). Scopus. https://doi.org/10.1103/PRXQuantum.4.030336
Paetznick, A., Knapp, C., Delfosse, N., Bauer, B., Haah, J., Hastings, M. B., & da Silva, M. P. (2023). Performance of Planar Floquet Codes with Majorana-Based Qubits. PRX Quantum, 4(1). Scopus. https://doi.org/10.1103/PRXQuantum.4.010310
Peng, H., Qiu, J., & Yan, Y. (2023). Reverse engineering of high-fidelity nonadiabatic holonomic quantum gates in the ensemble-ions system. In Y. Jiang, X. Wang, Y. Wang, D. Liu, & B. Xue (Eds.), Proc SPIE Int Soc Opt Eng (Vol. 12557). SPIE; Scopus. https://doi.org/10.1117/12.2652041
Quantum 2.0: Proceedings Optica Quantum 2.0 Conference and Exhibition. (2023). Quantum: Proc. Opt. Quantum Conf. Exhib. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85191431766&partnerID=40&md5=cbe6c6643adabd71f7995f5ab70f8137
Shi, W., & Malaney, R. (2023). Entanglement of Signal Paths via Noisy Superconducting Quantum Devices. Entropy, 25(1). Scopus. https://doi.org/10.3390/e25010153
Siegele, C., & Campagne-Ibarcq, P. (2023). Robust suppression of noise propagation in Gottesman-Kitaev-Preskill error correction. Physical Review A, 108(4). Scopus. https://doi.org/10.1103/PhysRevA.108.042427
Skoric, L., Browne, D. E., Barnes, K. M., Gillespie, N. I., & Campbell, E. T. (2023). Parallel window decoding enables scalable fault tolerant quantum computation. Nature Communications, 14(1). Scopus. https://doi.org/10.1038/s41467-023-42482-1
Stein, S., Sussman, S., Tomesh, T., Guinn, C., Türeci, E., Lin, S. F., Tang, W., Ang, J., Chakram, S., Li, A., Martonosi, M., Chong, F., Houck, A. A., Chuang, I. L., & DeMarco, M. (2023). HetArch: Heterogeneous Microarchitectures for Superconducting Quantum Systems. Proc. Annual IEEE/ACM Int. Symp. Microarchitecture, MICRO, 539–554. Scopus. https://doi.org/10.1145/3613424.3614300
Sudevan, S., Azses, D., Dalla Torre, E. G., Sela, E., & Das, S. (2023). Multipartite entanglement and quantum error identification in D -dimensional cluster states. Physical Review A, 108(2). Scopus. https://doi.org/10.1103/PhysRevA.108.022426
Sundaresan, N., Yoder, T. J., Kim, Y., Li, M., Chen, E. H., Harper, G., Thorbeck, T., Cross, A. W., Córcoles, A. D., & Takita, M. (2023). Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders. Nature Communications, 14(1). Scopus. https://doi.org/10.1038/s41467-023-38247-5
Teoh, J., Winkel, P., Babla, H. K., Chapman, B. J., Claes, J., de Graaf, S. J., Garmon, J. W. O., Kalfus, W. D., Lu, Y., Maiti, A., Sahay, K., Thakur, N., Tsunoda, T., Xue, S. H., Frunzio, L., Girvin, S. M., Puri, S., & Schoelkopf, R. J. (2023). Dual-rail encoding with superconducting cavities. Proceedings of the National Academy of Sciences of the United States of America, 120(41). Scopus. https://doi.org/10.1073/pnas.2221736120
Wu, Y., & Zhong, L. (2023). Fusion Blossom: Fast MWPM Decoders for QEC. In H. Muller, Y. Alexev, A. Delgado, & G. Byrd (Eds.), Proc. - IEEE Int. Conf. Quantum Comput. Eng., QCE (Vol. 1, pp. 928–938). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/QCE57702.2023.00107
Yang, H., & Kim, N. Y. (2023). Material-Inherent Noise Sources in Quantum Information Architecture. Materials, 16(7). Scopus. https://doi.org/10.3390/ma16072561
Zhu, X.-Y., Tu, T., Guo, G.-C., & Li, C.-F. (2023). Fast high-fidelity parity measurement of spin qubits in quantum dots using modulated pulses. Physical Review A, 107(3). Scopus. https://doi.org/10.1103/PhysRevA.107.033708