Topological Quantum Computation Using Majorana Fermions in Nanowire Networks: A Theoretical Feasibility Study
Abstract
Topological quantum computation offers a promising pathway toward fault-tolerant quantum information processing, with Majorana fermions emerging as key quasiparticles capable of encoding quantum states protected from local decoherence. Nanowire networks engineered to host Majorana zero modes have been widely proposed, yet their practical feasibility requires rigorous theoretical assessment under realistic physical constraints. This study aims to evaluate the theoretical viability of implementing topological quantum computation using Majorana fermions in semiconductor–superconductor nanowire networks. A modeling framework incorporating Bogoliubov–de Gennes equations, topological phase diagrams, non-Abelian braiding protocols, and disorder-induced perturbations is employed to assess stability and control requirements. Simulations investigate parameter regimes involving magnetic field strength, spin–orbit coupling, proximity-induced superconductivity, and wire-junction geometries. The results show that stable Majorana modes can be achieved within narrow but experimentally accessible parameter windows, and that non-Abelian braiding operations remain topologically robust against moderate disorder and quasiparticle poisoning. The study concludes that while significant engineering challenges persist—particularly regarding temperature constraints, material uniformity, and junction coherence—Majorana-based topological quantum computation remains theoretically feasible with current technological progress.
Full text article
References
Ayukaryana, N. R., Fauzi, M. H., & Hasdeo, E. H. (2021). The quest and hope of Majorana zero modes in topological superconductor for fault-tolerant quantum computing: An introductory overview. In D. S. Khaerudini, N. Darsono, A. R. Rhamdani, M. S. Utomo, Y. N. Thaha, I. Kartika, & A. R. T. Nugraha (Eds.), AIP Conf. Proc. (Vol. 2382). American Institute of Physics Inc.; Scopus. https://doi.org/10.1063/5.0059974
Chen, H. (2023). Research Progress on Majorana Fermions. Laser and Optoelectronics Progress, 60(5). Scopus. https://doi.org/10.3788/LOP212849
Duan, C., Sasmal, K., Maple, M. B., Podlesnyak, A., Zhu, J.-X., Si, Q., & Dai, P. (2020). Incommensurate Spin Fluctuations in the Spin-Triplet Superconductor Candidate UTe2. Physical Review Letters, 125(23). Scopus. https://doi.org/10.1103/PhysRevLett.125.237003
Ezawa, M. (2020). Non-Abelian braiding of Majorana-like edge states and topological quantum computations in electric circuits. Physical Review B, 102(7). Scopus. https://doi.org/10.1103/PhysRevB.102.075424
Génetay Johansen, E. G., & Simula, T. (2022). Prime number factorization using a spinor Bose–Einstein condensate-inspired topological quantum computer. Quantum Information Processing, 21(1). Scopus. https://doi.org/10.1007/s11128-021-03366-9
Génetay Johansen, E. G., & Simula, T. (2023). Topological quantum computation using analog gravitational holonomy and time dilation. SciPost Physics Core, 6(1). Scopus. https://doi.org/10.21468/SciPostPhysCore.6.1.005
Giustino, F., Lee, J. H., Trier, F., Bibes, M., Winter, S. M., Valentí, R., Son, Y.-W., Taillefer, L., Heil, C., Figueroa, A. I., Plaçais, B., Wu, Q., Yazyev, O. V., Bakkers, E. P. A. M., Nygård, J., Forn-Díaz, P., de Franceschi, S., McIver, J. W., Foa Torres, L. E. F., … Roche, S. (2020). The 2021 quantum materials roadmap. JPhys Materials, 3(4). Scopus. https://doi.org/10.1088/2515-7639/abb74e
Groenendijk, S., Calzona, A., Tschirhart, H., Idrisov, E. G., & Schmidt, T. L. (2019). Parafermion braiding in fractional quantum Hall edge states with a finite chemical potential. Physical Review B, 100(20). Scopus. https://doi.org/10.1103/PhysRevB.100.205424
Haruyama, J. (2021). Quantum-spin-Hall phases and 2D topological insulating states in atomically thin layers. Journal of Applied Physics, 129(9). Scopus. https://doi.org/10.1063/5.0029326
He, M., Sun, H., & He, Q. L. (2019). Topological insulator: Spintronics and quantum computations. Frontiers of Physics, 14(4). Scopus. https://doi.org/10.1007/s11467-019-0893-4
He, Y.-P., Hong, J.-S., & Liu, X.-J. (2020). Non-abelian statistics of Majorana modes and the applications to topological quantum computation. Wuli Xuebao/Acta Physica Sinica, 69(11). Scopus. https://doi.org/10.7498/aps.69.20200812
Herbrych, J., ?roda, M., Alvarez, G., Mierzejewski, M., & Dagotto, E. (2021). Interaction-induced topological phase transition and Majorana edge states in low-dimensional orbital-selective Mott insulators. Nature Communications, 12(1). Scopus. https://doi.org/10.1038/s41467-021-23261-2
Hu, L.-H., Liu, C.-X., & Zhang, F.-C. (2019). Topological Larkin-Ovchinnikov phase and Majorana zero mode chain in bilayer superconducting topological insulator films. Communications Physics, 2(1). Scopus. https://doi.org/10.1038/s42005-019-0126-8
Hwang, K., Go, A., Seong, J. H., Shibauchi, T., & Moon, E.-G. (2022). Identification of a Kitaev quantum spin liquid by magnetic field angle dependence. Nature Communications, 13(1). Scopus. https://doi.org/10.1038/s41467-021-27943-9
Komijani, Y. (2020). Isolating Kondo anyons for topological quantum computation. Physical Review B, 101(23). Scopus. https://doi.org/10.1103/PhysRevB.101.235131
Kong, L., Cao, L., Zhu, S., Papaj, M., Dai, G., Li, G., Fan, P., Liu, W., Yang, F., Wang, X., Du, S., Jin, C., Fu, L., Gao, H.-J., & Ding, H. (2021). Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor. Nature Communications, 12(1). Scopus. https://doi.org/10.1038/s41467-021-24372-6
Liu, S., Nie, S.-M., Qi, Y.-P., Guo, Y.-F., Yuan, H.-T., Yang, L.-X., Chen, Y.-L., Wang, M.-X., & Liu, Z.-K. (2021). Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe3. Chinese Physics Letters, 38(7). Scopus. https://doi.org/10.1088/0256-307X/38/7/077302
Luo, J., Li, Y., Li, J., Hashimoto, T., Kawakami, T., Lu, H., Jia, S., Sato, M., & Wang, J. (2019). Surface superconductivity on Weyl semimetal induced by nonmagnetic and ferromagnetic tips. Physical Review Materials, 3(12). Scopus. https://doi.org/10.1103/PhysRevMaterials.3.124201
Mohapatra, T., Pal, S., & Benjamin, C. (2022). Probing the topological character of superconductors via nonlocal Hanbury Brown and Twiss correlations. Physical Review B, 106(12). Scopus. https://doi.org/10.1103/PhysRevB.106.125402
Oudah, M., Bannies, J., Bonn, D. A., & Aronson, M. C. (2022). Superconductivity and quantum oscillations in single crystals of the compensated semimetal CaSb2. Physical Review B, 105(18). Scopus. https://doi.org/10.1103/PhysRevB.105.184504
Rosenbach, D., Oellers, N., Jalil, A. R., Mikulics, M., Kölzer, J., Zimmermann, E., Mussler, G., Bunte, S., Gru?zmacher, D., Lüth, H., & Schäpers, T. (2020). Quantum Transport in Topological Surface States of Selectively Grown Bi2Te3 Nanoribbons. Advanced Electronic Materials, 6(8). Scopus. https://doi.org/10.1002/aelm.202000205
Sturges, T. J., McDermott, T., Buraczewski, A., Clements, W. R., Renema, J. J., Nam, S. W., Gerrits, T., Lita, A., Kolthammer, W. S., Eckstein, A., Walmsley, I. A., & Stobi?ska, M. (2021). Quantum simulations with multiphoton Fock states. Npj Quantum Information, 7(1). Scopus. https://doi.org/10.1038/s41534-021-00427-w
Takahashi, M. O., Yamada, M. G., Takikawa, D., Mizushima, T., & Fujimoto, S. (2021). Topological nematic phase transition in Kitaev magnets under applied magnetic fields. Physical Review Research, 3(2). Scopus. https://doi.org/10.1103/PhysRevResearch.3.023189
Toikka, L. A. (2019). Non-Abelian Majorana fermions in topological s-wave Fermi superfluids. New Journal of Physics, 21(11). Scopus. https://doi.org/10.1088/1367-2630/ab5336
Wang, H., & Principi, A. (2021). Majorana edge and corner states in square and kagome quantum spin-32 liquids. Physical Review B, 104(21). Scopus. https://doi.org/10.1103/PhysRevB.104.214422
Wang, R.-B., Furusaki, A., & Starykh, O. A. (2020). Majorana end states in an interacting quantum wire. Physical Review B, 102(16). Scopus. https://doi.org/10.1103/PhysRevB.102.165147
Yan, Q., & Sun, Q.-F. (2021). Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions. Chinese Physics B, 30(4). Scopus. https://doi.org/10.1088/1674-1056/abe296
Zhang, P., Wang, Z., Wu, X., Yaji, K., Ishida, Y., Kohama, Y., Dai, G., Sun, Y., Bareille, C., Kuroda, K., Kondo, T., Okazaki, K., Kindo, K., Wang, X., Jin, C., Hu, J., Thomale, R., Sumida, K., Wu, S., … Shin, S. (2019). Multiple topological states in iron-based superconductors. Nature Physics, 15(1), 41–47. Scopus. https://doi.org/10.1038/s41567-018-0280-z
Zhu, Z., Zheng, H., & Jia, J.-F. (2021). Majorana zero mode in the vortex of artificial topological superconductor. Journal of Applied Physics, 129(15). Scopus. https://doi.org/10.1063/5.0043694