The Post-Quantum Cryptography Challenge: A Security Analysis of Lattice-Based vs. Code-Based Algorithms
Abstract
The emergence of large-scale quantum computers poses a critical threat to classical public-key cryptographic systems, prompting the rapid development of post-quantum cryptography as a foundational component of future digital security. Lattice-based and code-based algorithms have become leading candidates due to their strong conjectured resistance to quantum attacks; however, their comparative security characteristics remain insufficiently examined under unified analytical frameworks. This study aims to provide a comprehensive security analysis of lattice-based and code-based post-quantum cryptographic algorithms by evaluating their resilience against known classical and quantum attack vectors. A structured methodological approach is employed, combining complexity-theoretic assessment, parameter-sensitivity evaluation, and simulated attack modeling across representative schemes such as CRYSTALS-Kyber, NTRU, Classic McEliece, and BIKE. The results indicate that lattice-based schemes offer strong security margins under current attack models but exhibit notable sensitivity to parameter misconfiguration and structured lattice weaknesses. Code-based schemes demonstrate exceptional robustness due to the hardness of decoding random linear codes, yet face practical limitations in key size and implementation overhead. The study concludes that both families remain viable for post-quantum standardization, although their security assurances depend heavily on careful parameter selection and continued cryptanalytic scrutiny as quantum hardware evolves.
Full text article
References
Azouaoui, M., Bronchain, O., Cassiers, G., Hoffmann, C., Kuzovkova, Y., Renes, J., Schneider, T., Schönauer, M., Standaert, F.-X., & van Vredendaal, C. (2023). Protecting Dilithium against Leakage Revisited Sensitivity Analysis and Improved Implementations. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023(4), 58–79. Scopus. https://doi.org/10.46586/tches.v2023.i4.58-79
Chen, A. C. H. (2023). Post-Quantum Cryptography Neural Network. Int. Conf. Smart Syst. Appl. Electr. Sci., ICSSES. Scopus. https://doi.org/10.1109/ICSSES58299.2023.10201083
Chen, T., Li, H., Li, W., Nan, L., & Du, Y. (2023). Reconfigurable Polynomial Multiplication Architecture for Lattice-based Post-quantum Cryptography Algorithms. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 45(9), 3380–3392. Scopus. https://doi.org/10.11999/JEIT230284
D’Anvers, J.-P., van Beirendonck, M., & Verbauwhede, I. (2023). Revisiting Higher-Order Masked Comparison for Lattice-Based Cryptography: Algorithms and Bit-Sliced Implementations. IEEE Transactions on Computers, 72(2), 321–332. Scopus. https://doi.org/10.1109/TC.2022.3197074
El Defrawy, K., Genise, N., & Manohar, N. (2023). On the Hardness of Scheme-Switching Between SIMD FHE Schemes. In T. Johansson, D. Smith-Tone, & D. Smith-Tone (Eds.), Lect. Notes Comput. Sci.: Vol. 14154 LNCS (pp. 196–224). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-40003-2_8
Greuet, A., Montoya, S., & Vermeersch, C. (2023). Modular Polynomial Multiplication Using RSA/ECC Coprocessor. In S. Li, M. Manulis, & A. Miyaji (Eds.), Lect. Notes Comput. Sci.: Vol. 13983 LNCS (pp. 283–304). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-39828-5_16
Guilley, G., Youssef, S., Zhang, F., & Yang, B.-L. (2023). Post-Quantum Cryptography—Having It Implemented Right. Journal of Cryptologic Research, 10(3), 650–666. Scopus. https://doi.org/10.13868/j.cnki.jcr.000624
Hadi, O. K., & Sadkhan, S. B. (2023). Proposed Security Evaluation of Post-Quantum Cryptography Based on Soft Computing. Int. Conf. Adv. Comput. Appl., ACA, 217–223. Scopus. https://doi.org/10.1109/ACA57612.2023.10346878
He, P., & Xie, J. (2023). Novel Implementation of High-Performance Polynomial Multiplication for Unified KEM Saber based on TMVP Design Strategy. Proc. - Int. Symp. Qual. Electron. Des., ISQED, 2023-April. Scopus. https://doi.org/10.1109/ISQED57927.2023.10129320
Hegde, S. B., Jamuar, A., & Kulkarni, R. (2023). Post Quantum Implications on Private and Public Key Cryptography. Int. Conf. Smart Syst. Appl. Electr. Sci., ICSSES. Scopus. https://doi.org/10.1109/ICSSES58299.2023.10199503
Henrich, J., Heinemann, A., Wiesmaier, A., & Schmitt, N. (2023). Performance Impact of PQC KEMs on TLS 1.3 Under Varying Network Characteristics. In E. Athanasopoulos & B. Mennink (Eds.), Lect. Notes Comput. Sci. (Vol. 14411, pp. 267–287). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-49187-0_14
K, K., Rohini, C., Sermakani, A. M., Dhakshunaamoorthiy, n., Menaga, P., & Maharasi, M. (2023). Quantum-Resistant Wireless Intrusion Detection System using Machine Learning Techniques. Int. Conf. Comput., Commun., Control Autom., ICCUBEA. Scopus. https://doi.org/10.1109/ICCUBEA58933.2023.10392127
Karthikeyan, D. (2023). Secure Medical Data Transmission In Iot Healthcare: Hybrid Encryption, Post-Quantum Cryptography, And Deep Learning-Enhanced Approach. Glob. Conf. Inf. Technol. Commun., GCITC. Scopus. https://doi.org/10.1109/GCITC60406.2023.10425954
Kim, J., & Park, J. H. (2023). NTRU++: Compact Construction of NTRU Using Simple Encoding Method. IEEE Transactions on Information Forensics and Security, 18, 4760–4774. Scopus. https://doi.org/10.1109/TIFS.2023.3299172
Levina, A., Kadykov, V., & Rao Valluri, M. R. (2023). Security Analysis of Hybrid Attack for NTRU-Class Encryption Schemes. IEEE Access, 11, 109939–109952. Scopus. https://doi.org/10.1109/ACCESS.2023.3321693
Li, A., Lu, J., Liu, D., Hu, A., Li, X., Yang, S., & Huang, T. (2023). Multi-Probability Hash-based Random Number Generator for Post-Quantum Cryptography. Midwest Symp Circuits Syst, 694–697. Scopus. https://doi.org/10.1109/MWSCAS57524.2023.10406008
Malygina, E. S., Kutsenko, A. V., Novoselov, S. A., Kolesnikov, N. S., Bakharev, A. O., Khilchuk, I. S., Shaporenko, A. S., & Tokareva, N. N. (2023). Post-Quantum Cryptosystems: Open Problems and Solutions. Lattice-Based Cryptosystems. Journal of Applied and Industrial Mathematics, 17(4), 767–790. Scopus. https://doi.org/10.1134/S1990478923040087
Marzougui, S., Kabin, I., Krämer, J., Aulbach, T., & Seifert, J.-P. (2023). On the Feasibility of Single-Trace Attacks on the Gaussian Sampler Using a CDT. In E. B. Kavun & M. Pehl (Eds.), Lect. Notes Comput. Sci.: Vol. 13979 LNCS (pp. 149–169). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-29497-6_8
Ngouen, M., Rahman, M. A., Prabakar, N., Uluagac, S., & Njilla, L. (2023). Q-SECURE: A Quantum Resistant Security for Resource Constrained IoT Device Encryption. In M. Quwaider & Y. Jararweh (Eds.), Int. Conf. Internet Things: Syst., Manag. Secur., IOTSMS (pp. 141–148). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/IOTSMS59855.2023.10325770
Ni, Z., Khalid, A., Liu, W., & Maire O’Neill, M. (2023). Towards a Lightweight CRYSTALS-Kyber in FPGAs: An Ultra-lightweight BRAM-free NTT Core. Proc IEEE Int Symp Circuits Syst, 2023-May. Scopus. https://doi.org/10.1109/ISCAS46773.2023.10181340
Putranto, D. S. C., Wardhani, R. W., Larasati, H. T., & Kim, H. (2023). Space and Time-Efficient Quantum Multiplier in Post Quantum Cryptography Era. IEEE Access, 11, 21848–21862. Scopus. https://doi.org/10.1109/ACCESS.2023.3252504
Qiao, Z., Liu, Y., Zhou, Y., Ming, J., Jin, C., & Li, H. (2023). Practical Public Template Attack Attacks on CRYSTALS-Dilithium With Randomness Leakages. IEEE Transactions on Information Forensics and Security, 18, 1–14. Scopus. https://doi.org/10.1109/TIFS.2022.3215913
Rabas, T., Bu?ek, J., & Lórencz, R. (2023). SPA Attack on NTRU Protected Implementation with Sparse Representation of Private Key. In P. Mori, G. Lenzini, & S. Furnell (Eds.), Int. Conf. Inf. Syst. Secur. Priv. (pp. 135–143). Science and Technology Publications, Lda; Scopus. https://doi.org/10.5220/0011729200003405
Singh, M., & Mishra, D. (2023). Post-quantum secure authenticated key agreement protocol for wireless sensor networks. Telecommunication Systems, 84(1), 101–113. Scopus. https://doi.org/10.1007/s11235-023-01043-z
Singh, S., Fan, X., Prasad, A. K., Jia, L., Nag, A., Balasubramonian, R., Bojnordi, M. N., & Shi, E. (2023). XCRYPT: Accelerating Lattice-Based Cryptography With Memristor Crossbar Arrays. IEEE Micro, 43(5), 45–54. Scopus. https://doi.org/10.1109/MM.2023.3248080
Song, G., Jang, K., Eum, S., Sim, M., & Seo, H. (2023). NTT and Inverse NTT Quantum Circuits in CRYSTALS-Kyber for Post-Quantum Security Evaluation. Applied Sciences (Switzerland), 13(18). Scopus. https://doi.org/10.3390/app131810373
Tanaka, Y., Ueno, R., Xagawa, K., Ito, A., Takahashi, J., & Homma, N. (2023). Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023(3), 473–503. Scopus. https://doi.org/10.46586/tches.v2023.i3.473-503
Wang, L., Huang, C., & Cheng, H. (2023). Novel proxy signature from lattice for the post-quantum internet of things. Journal of Ambient Intelligence and Humanized Computing, 14(8), 9939–9946. Scopus. https://doi.org/10.1007/s12652-021-03661-4
Wei, Y., Bi, L., Lu, X., & Wang, K. (2023). Security estimation of LWE via BKW algorithms. Cybersecurity, 6(1). Scopus. https://doi.org/10.1186/s42400-023-00158-9
Yang, Y., Yuan, H., Yan, L., & Ruan, Y. (2023). Post-quantum identity-based authenticated multiple key agreement protocol. ETRI Journal, 45(6), 1090–1102. Scopus. https://doi.org/10.4218/etrij.2022-0320
Zhao, X.-Y., Liang, Z.-C., Hu, Y., Geng, H.-X., & Zhao, Y.-L. (2023). NTT Architecture Research and Its FPGA Hardware Optimization Implementation. Jisuanji Xuebao/Chinese Journal of Computers, 46(12), 2670–2686. Scopus. https://doi.org/10.11897/SP.J.1016.2023.02670
Zhou, T., Zheng, F.-Y., Lin, J.-Q., Wei, R., & Tang, W.-X. (2023). On Software Implementations of Post-Quantum Cryptography. Journal of Cryptologic Research, 11(2), 308–343. Scopus. https://doi.org/10.13868/j.cnki.jcr.000681
Zhuang, E.-S., & Fan, C.-I. (2023). Multi-Keyword Searchable Identity-Based Proxy Re-Encryption from Lattices. Mathematics, 11(18). Scopus. https://doi.org/10.3390/math11183830