AI-POWERED PREDICTIVE MODELING OF FOREST FIRE RISK IN RIAU PROVINCE BASED ON CLIMATE, PEATLAND, AND LAND USE DATA
Abstract
Forest and peatland fires in Riau Province, Indonesia, are a recurrent environmental disaster with severe regional and global consequences. Traditional fire danger rating systems often fail to capture the complex interplay of factors driving these events. The advancement of artificial intelligence (AI) offers an opportunity to develop more accurate and dynamic fire risk prediction models. This study aimed to develop and validate a high-performance, AI-powered model for predicting daily forest fire risk at a high spatial resolution across Riau Province by integrating climate, peatland, and land use data. We integrated historical satellite-detected fire hotspots (2015-2023) as the dependent variable. Predictor variables included daily climate data (e.g., temperature, precipitation, wind speed), static peatland characteristics (e.g., depth, type), and dynamic land use/land cover data. An XGBoost (Extreme Gradient Boosting) machine learning algorithm was trained to learn the complex, non-linear relationships between these drivers and fire occurrence. The model’s predictive performance was rigorously evaluated using the Area Under the Curve (AUC) metric. The XGBoost model demonstrated high predictive accuracy, achieving an AUC of 0.93. The analysis revealed that the number of consecutive dry days, peatland depth, and proximity to oil palm plantations were the most influential variables in predicting fire risk. The model successfully generated daily 1-km resolution fire risk maps, identifying specific areas with elevated danger. The AI-powered model provides a robust and significantly more accurate tool for forest fire forecasting in fire-prone tropical peatland landscapes. This approach offers a critical advancement for developing effective early warning systems, enabling targeted resource allocation for fire prevention and mitigation efforts.
Full text article
References
Adeyeri, O. E. (2024). Land surface dynamics and meteorological forcings modulate land surface temperature characteristics. Sustainable Cities and Society, 101(Query date: 2025-10-14 11:14:33). https://doi.org/10.1016/j.scs.2023.105072
Aggarwal, M., Sahoo, P., Saha, S., & Das, P. (2023). Machine Learning-Mediated Ultrasensitive Detection of Citrinin and Associated Mycotoxins in Real Food Samples Discerned from a Photoluminescent Carbon Dot Barcode Array. Journal of Agricultural and Food Chemistry, 71(34), 12849–12858. Scopus. https://doi.org/10.1021/acs.jafc.3c04846
Agus, F., Tenorio, F. A., Saleh, S., Purwantomo, D. K. G., Yustika, R. D., Marwanto, S., Suratman, Sidhu, M. S., Cock, J., Kam, S. P., Fairhurst, T., Rattalino Edreira, J. I., Donough, C., & Grassini, P. (2024). Guiding oil palm intensification through a spatial extrapolation domain framework. Agricultural Systems, 213, 103778. https://doi.org/10.1016/j.agsy.2023.103778
Ahmad, S. F., Alam, M. M., Rahmat, Mohd. K., Mubarik, M. S., & Hyder, S. I. (2022). Academic and Administrative Role of Artificial Intelligence in Education. Sustainability, 14(3), 1101. https://doi.org/10.3390/su14031101
Akkajit, P., Alahi, M. E. E., & Sukkuea, A. (2024). Enhanced detection and classification of microplastics in marine environments using deep learning. Regional Studies in Marine Science, 80, 103880. https://doi.org/10.1016/j.rsma.2024.103880
Aljohani, N. R., Aslam, M. A., Khadidos, A. O., & Hassan, S.-U. (2022). A Methodological Framework to Predict Future Market Needs for Sustainable Skills Management Using AI and Big Data Technologies. Applied Sciences, 12(14), 6898. https://doi.org/10.3390/app12146898
Atella, V., & Scandizzo, P. L. (2024). Bioeconomy, biodiversity, and the human footprint. In The Covid-19 Disruption and the Global Health Challenge (pp. 381–406). Elsevier. https://doi.org/10.1016/B978-0-44-318576-2.00024-X
Aubin, I., Deschênes, É., Santala, K. R., Emilson, E. J. S., Schoonmaker, A. L., McIntosh, A. C. S., Bourgeois, B., Cardou, F., Dupuch, A., Handa, I. T., Lapointe, M., Lavigne, J., Maheu, A., Nadeau, S., Naeth, M. Anne., Neilson, E. W., & Wiebe, P. A. (2024). Restoring forest ecosystem services through trait-based ecology. Environmental Reviews, 32(4), 498–524. https://doi.org/10.1139/er-2023-0130
Bu?ivalová, Z., Yoh, N., Butler, R. A., Chandra Sagar, H. S. S., & Game, E. T. (2023). Broadening the focus of forest conservation beyond carbon. Current Biology, 33(11), R621–R635. https://doi.org/10.1016/j.cub.2023.04.019
Efthimiou, N. (2025). Governance and degradation of soil in the EU. An overview of policies with a focus on soil erosion. Soil and Tillage Research, 245, 106308. https://doi.org/10.1016/j.still.2024.106308
Feigin, S. V., Wiebers, D. O., Lueddeke, G., Morand, S., Lee, K., Knight, A., Brainin, M., Feigin, V. L., Whitfort, A., Marcum, J., Shackelford, T. K., Skerratt, L. F., & Winkler, A. S. (2023). Proposed solutions to anthropogenic climate change: A systematic literature review and a new way forward. Heliyon, 9(10), e20544. https://doi.org/10.1016/j.heliyon.2023.e20544
Gajendiran, K., Kandasamy, S., & Narayanan, M. (2024). Influences of wildfire on the forest ecosystem and climate change: A comprehensive study. Environmental Research, 240, 117537. https://doi.org/10.1016/j.envres.2023.117537
Goh, K. C., Kurniawan, T. A., AlSultan, G. A., Othman, M. H. D., Anouzla, A., Aziz, F., Ali, I., Casila, J. C. C., Khan, M. I., Zhang, D., Onn, C. W., Seow, T. W., & Shafii, H. (2025). Innovative circular bioeconomy and decarbonization approaches in palm oil waste management: A review. Process Safety and Environmental Protection, 195, 106746. https://doi.org/10.1016/j.psep.2024.12.127
Gomaa, E., Zerouali, B., Difi, S., El-Nagdy, K. A., Santos, C. A. G., Abda, Z., Ghoneim, S. S. M., Bailek, N., Silva, R. M. D., Rajput, J., & Ali, E. (2023). Assessment of hybrid machine learning algorithms using TRMM rainfall data for daily inflow forecasting in Três Marias Reservoir, eastern Brazil. Heliyon, 9(8), e18819. https://doi.org/10.1016/j.heliyon.2023.e18819
Gopakumar, L., Kholdorov, S., & Shamsiddinov, T. (2025). Greenhouse gases emissions: Problem, global reality, and future perspectives. In Agriculture Toward Net Zero Emissions (pp. 11–26). Elsevier. https://doi.org/10.1016/B978-0-443-13985-7.00003-8
Hong, C., Zhong, R., Xu, M., He, P., Mo, H., Qin, Y., Shi, D., Chen, X., He, K., & Zhang, Q. (2025). Interactions Among Food Systems, Climate Change, and Air Pollution: A Review. Engineering, 44, 215–233. https://doi.org/10.1016/j.eng.2024.12.021
Hussein, R. R., Obaid, S. A. A., Baban, O., & Abdulrahman, M. M. (2024). Comparative Analysis of Economic Systems and Institutional Frameworks: A Cross-National Study. Journal of Ecohumanism, 3(5), 650–664. Scopus. https://doi.org/10.62754/joe.v3i5.3929
Karurung, W. S., Lee, K., & Lee, W. (2025). Assessment of forest fire vulnerability prediction in Indonesia: Seasonal variability analysis using machine learning techniques. International Journal of Applied Earth Observation and Geoinformation, 138, 104435. https://doi.org/10.1016/j.jag.2025.104435
Kasuga, F. (2023). Climate change: Food safety challenges in the near future. In Present Knowledge in Food Safety (pp. 1113–1124). Elsevier. https://doi.org/10.1016/B978-0-12-819470-6.00019-6
Lau, Y., Kenney?Lazar, M., Bashir, S. N., Cole, R., Gevaña, D. T., Lee, J., Marks, D., Miller, M. A., Ren, Y., Taylor, D., & Zhou, Y. (2025). Challenges in Forest Carbon Governance: Insights From Southeast Asia. WIREs Climate Change, 16(5), e70018. https://doi.org/10.1002/wcc.70018
Luo, B., & Dou, X. (2024). Climate change, agricultural transformation and climate smart agriculture development in China. Heliyon, 10(21), e40008. https://doi.org/10.1016/j.heliyon.2024.e40008
Mohamad Zaki, M. A., Ooi, J., Ng, W. P. Q., How, B. S., Lam, H. L., Foo, D. C. Y., & Lim, C. H. (2025). Impact of industry 4.0 technologies on the oil palm industry: A literature review. Smart Agricultural Technology, 10, 100685. https://doi.org/10.1016/j.atech.2024.100685
Mrabet, R. (2023). Sustainable agriculture for food and nutritional security. In Sustainable Agriculture and the Environment (pp. 25–90). Elsevier. https://doi.org/10.1016/B978-0-323-90500-8.00013-0
Nasution, R. A. R., Rakuasa, H., Turi, F., Hidayatullah, M., & Latue, P. C. (2024). Analysis of Average Land Surface Temperature of Java Island, Indonesia in 2024 using reduceRegions in Google Earth Engine. Selvicoltura Asean, 1(2), 80–95. https://doi.org/10.70177/jsa.v1i2.1182
Niu, S., Zhang, R., Wang, S., Wu, Y., Chen, W., Tian, D., Huang, Y., Xia, J., Fang, Y., Zhang, Y., Liu, L., Yan, J., & Yu, G. (2024). The dynamic trajectory of carbon dioxide removal from terrestrial ecosystem restoration: A critical review. Agricultural and Forest Meteorology, 358, 110244. https://doi.org/10.1016/j.agrformet.2024.110244
Okonkwo, P. C., Nwokolo, S. C., & Shammas, M. I. (2025). Analysis of the effects of various policies and initiatives on the transportation sector. In Net-Zero Transit (pp. 237–316). Elsevier. https://doi.org/10.1016/B978-0-443-40373-6.00017-5
Qasha, V., Manyevere, A., Flynn, T., & Mashamaite, C. V. (2025). Pedometric approaches to assess soil organic carbon dynamics in forest ecosystems: A review. Pedosphere, S1002016025000761. https://doi.org/10.1016/j.pedsph.2025.07.017
Rakuasa, H., Latue, P. C., & Pakniany, Y. (2024a). Climate Change and its Impact on Asian Forest Landscapes: A Critical Review. Selvicoltura Asean, 1(1), 23–16. https://doi.org/10.55849/selvicoltura.v1i1.172
Rakuasa, H., Latue, P. C., & Pakniany, Y. (2024b). The Role of Russian Federation Government Policy in Addressing the Impacts of Global Climate Change. Selvicoltura Asean, 1(1), 1–9. https://doi.org/10.55849/selvicoltura.v1i1.172
Rakuasa, H., Latue, P., & Pakniany, Y. (2024c). A Geographic Perspective in the Context of Political Ecology for Understanding Strategic Environmental Assessment in Indonesia. Selvicoltura Asean, 1(1), 33–42. https://doi.org/10.55849/selvicoltura.v1i1.172
Reichle, D. E. (2023). Anthropogenic alterations to the global carbon cycle and climate change. In The Global Carbon Cycle and Climate Change (pp. 285–352). Elsevier. https://doi.org/10.1016/B978-0-443-18775-9.00002-4
Reyes, M. C., Flores, J., & Fernandez, C. (2024). Community-Based Forest Management: Challenges and Opportunities in Tropical Asia. Selvicoltura Asean, 1(5), 218–228. https://doi.org/10.70177/jsa.v1i5.1668
Shivaprasad, K. M., Sowmya, M. S., Danakumara, T., Gowda, M. M., Kumar, R., Kumar, S. D., & Kumar, B. S. (2025). Forest fire and its impact on forest biodiversity. In Forests for Inclusive and Sustainable Economic Growth (pp. 37–53). Elsevier. https://doi.org/10.1016/B978-0-443-31406-3.00004-7
Soontha, L., & Bhat, M. Y. (2026). Global firestorm: Igniting insights on environmental and socio-economic impacts for future research. Environmental Development, 57, 101362. https://doi.org/10.1016/j.envdev.2025.101362
Sorkhabi, O. M. (2024). Deep learning of Sentinel-1 SAR for burnt peatland detection in Ireland. Geosystems and Geoenvironment, 3(4), 100321. https://doi.org/10.1016/j.geogeo.2024.100321
Vickery, C. E., & Quinn, J. E. (2024). Forest, climate, and policy literature lacks acknowledgement of environmental justice, diversity, equity, and inclusion. Journal of Environmental Management, 358. Scopus. https://doi.org/10.1016/j.jenvman.2024.120804
Wang, S. L., Ng, T. F., Mohamed, K., Dzulkifly, S., Li, X., & Leong, Y.-H. (2024). Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) prediction model based on limited peat samples using an evolved artificial neural network. Chemosphere, 362, 142683. https://doi.org/10.1016/j.chemosphere.2024.142683
Wang, Y.-P., Zhang, L., Liang, X., & Yuan, W. (2024). Coupled models of water and carbon cycles from leaf to global: A retrospective and a prospective. Agricultural and Forest Meteorology, 358, 110229. https://doi.org/10.1016/j.agrformet.2024.110229
Wei, Y., Chen, Y., Wang, J., Yu, P., Xu, L., Zhang, C., Shen, H., Liu, Y., & Zhang, G. (2025). Mapping soil organic carbon in fragmented agricultural landscapes: The efficacy and interpretability of multi-category remote sensing variables. Journal of Integrative Agriculture, S2095311925000528. https://doi.org/10.1016/j.jia.2025.02.049
Xu, Z., Li, J., Cheng, S., Rui, X., Zhao, Y., He, H., Guan, H., Sharma, A., Erxleben, M., Chang, R., & Xu, L. L. (2025). Deep learning for wildfire risk prediction: Integrating remote sensing and environmental data. ISPRS Journal of Photogrammetry and Remote Sensing, 227, 632–677. https://doi.org/10.1016/j.isprsjprs.2025.06.002
Authors
Copyright (c) 2025 Loso Judijanto, Siti Mariam, Ahmad Zainal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.